kHz gravitational waves from numerical relativity

Masaru Shibata

Max Planck Institute for Gravitational Physics at Potsdam
 & Center for Gravitational Physics, Yukawa Institute
 for Theoretical Physics, Kyoto U.

22.05.2019

Outline

- **0. Introduction**
- 1. Binary neutron star merger
- 2. Black hole-neutron star tidal disruption
- **3. Stellar core collapse of massive stars**

I will not talk

- Low-mass BH+BH merger
- Higher QNM modes $(l \ge 3)$ for BH-BH
- Collapse of exotic objects to BH (e.g., cosmic string loop, axion stars) & merger of exotics

Introduction: What are high-freq sources ?

Orbital & oscillation timescale of stars

$$\circ f_{\text{orb}} \approx \frac{1}{\pi} \sqrt{\frac{GM}{r^3}} = 1.16 \text{ kHz} \left(\frac{r}{30 \text{ km}}\right)^{-3/2} \left(\frac{M}{2.7M_{\text{sun}}}\right)^{1/2}$$
$$\circ \tau_{\text{osc}} \approx \frac{1}{\sqrt{G\rho}} = 0.387 \text{ ms} \left(\frac{\rho}{10^{14} \text{ g/cm}^3}\right)^{-1/2}$$
$$\Rightarrow f_{\text{osc}} \approx \sqrt{G\rho} = 2.58 \text{ kHz} \left(\frac{\rho}{10^{14} \text{ g/cm}^3}\right)^{1/2}$$

• Neutron stars are only (non-exotic) matter sources of kHz-gravitational waves: other (normal) stars are not

I.e., irrespective of EOS, threshold mass $> 2.8 M_{sun}$

Compact NS-NS system in our galaxy

		Orbital period Eccentricity			Each mass		$\times 10^8$ yrs
	PSR	$\dot{P}(day)$	е	$m(M_{sun})$	M_1	M_2	$T_{\rm GW}$
1.	B1913+16	0.323	0.617	2.828	1.441	1.387	3.0
2.	B1534+12	0.421	0.274	2.678	1.333	1.345	27
3.	B2127+11C	0.335	0.681	2.71	1.35	1.36	2.2
4.	J0737-3039	0.102	0.088	2.58	1.34	1.25	0.86
5.	J1756-2251	0.32	0.181	2.57	1.34	1.23	17
6.	J1906+746	0.166	0.085	2.61	1.29	1.32	3.1
7.	J1913+1102	0.206	0.090	2.875	1.65	1.24	5.0
8.	J1757-1854	0.184	0.606	2.74	1.35	1.39	0.77
9.	J1946+2052	0.078	0.064	~2.50	~1.2	~1.3	0.46

➤ Total Mass of NS in compact NS-NS is in a narrow range, $m \approx 2.7 \pm 0.2 M_{sun} \text{ and for many, } m < 2.8 M_{sun}$

Gravitational waveform from NS-NS (1.35-1.35 solar mass)

Clear correlation between peak and radius

Black hole formation case

Caution:

Physical state of remnant NS is very uncertain, similar to supernova case

- Magnetic fields are surely amplified (Price-Rosswog 2006, Kiuchi et al. 2014, 15, 18)
- \rightarrow It is natural to consider that **turbulence** will be excited (cf. the first talk in the today's morning on Tokamac)
- → Turbulence viscosity is likely to be excited
- → Typically $v = \alpha_v c_s H$ with $\alpha_v = 0.01$: but uncertain (c_s : sound velocity, H: scale height)

Shibata & Kiuchi, PRD 2017

Gravitational waveforms in viscous hydro

Spectrum

2 BH-NS: Tidal disruption or not

- For tidal disruption
- *<u>Large NS Radius</u> or
- ✤ Small BH mass or
- High corotation spin is necessary

BH-NS with aligned BH spin

BH-NS with aligned BH spin

GW frequency at tidal force

$$\Omega = \sqrt{\frac{GM}{r_{\rm TD}^3}} = \sqrt{\frac{GM_{\rm NS}\left(1+Q\right)}{r_{\rm TD}^3}} = \sqrt{\frac{GM_{\rm NS}\left(1+Q\right)}{\left(\alpha R_{\rm NS}\right)^3 Q}} = \sqrt{G\rho}\sqrt{\frac{4\pi(1+Q)}{3\alpha^3 Q}}$$

Mass ratio $Q = M_{\rm BH} / M_{\rm NS}$ At the onset of tidal disruption, $r_{\rm TD} = \alpha R_{\rm NS} Q^{1/3}$ Here, $\frac{4\pi}{3\alpha^3} = 1.02 \left(\frac{\alpha}{1.6}\right)^3 \& \frac{1+Q}{Q} = 1.05 \sim 1.2$ for Q = 5 - 20 $\rightarrow f = \frac{\Omega}{\pi} \propto \sqrt{G\rho}$

This frequency reflects neutron-star average density !

BH-NS: Signal of tidal disruption

BH-NS Fourier spectrum

3 supernovae

Spectrum (arXiv: 1903.09224)

Black hole formation from direct collapse of very massive star Black hole mass at formation ~ 20 solar mass dimensionless spin ~0.8

Uchida et al., PRD 99, 041402, 2019

 $D M \Psi_{20}$

Spectrum: spin > ~0.5 is promising

Uchida et al., PRD 99, 041402, 2019

Summary

- Promising high-freq sources for 3G detectors
- 1. Merger remnant of NS-NS \rightarrow NS radius
- 2. Tidal disruption of BH-NS \rightarrow NS average density
- 3. Supernovae, protoNS \rightarrow Mechanism of SN
- 4. Supernovae, BH formation → Finding BH formation from collapse for the first time
- BH-BH \rightarrow ringdown (relatively low mass)
- Other exotic possibilities: Axion star collapse, cosmic string collapse, primordial BH-BH mergers, axion stars merger

Sensitivity of LIGO & VIRGO O2

High-resolution GRMHD for NS-NS

Kelvin-Helmholtz instability:
→ Magnetic field should be amplified by winding
→ Quick angular momentum transport ? (not yet seen)

Magnetic energy: Resolution dependence

B field would be amplified in $\Delta t \ll 1 \text{ ms} \rightarrow \text{turbulence}$?

Frequency evolution

