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e Susskind and Uglum (Phys. Rev. D 50, 2700 (1994)) derived a similar result for Rindler
space (accelerated observers) by considering a BH in the limit of infinite radius
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SBH = 772
a2

e 't Hooft showed that Sgy can be viewed as thermal entropy of a quantum field
near a Schwarzschild horizon (Nucl. Phys. B 256, 727 (1985))

e In local QFT a UV regulator is needed: vanishing field at small distance from
horizon: a “brick wall”

e Do not need a black hole for such area law!

e Susskind and Uglum (Phys. Rev. D 50, 2700 (1994)) derived a similar result for Rindler
space (accelerated observers) by considering a BH in the limit of infinite radius

I

[Upon introduction of a “brick wall” regulator obtain entropy density ~ 1/L% ]
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Thermodynamic nature of gravity?

Jacobson (Phys. Rev. Lett. 75, 1260 (1995)): Einstein equations as an equation of state
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Thermodynamic nature of gravity?

Jacobson (Phys. Rev. Lett. 75, 1260 (1995)): Einstein equations as an equation of state
e Entropy balance relation S = 0E/T
e Demand this relation to hold for all local Rindler horizons

e O0E = energy flux across the horizon and T = Ty = a/27 Unruh temperature
related to the local acceleration a
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Thermodynamic nature of gravity?

Jacobson (Phys. Rev. Lett. 75, 1260 (1995)): Einstein equations as an equation of state
Entropy balance relation S = 0E/T
Demand this relation to hold for all local Rindler horizons

0E = energy flux across the horizon and T = Ty = a/27w Unruh temperature
related to the local acceleration a

Assume a finite entropy per area ~ 1/L% associated with local Rindler horizon
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Thermodynamic nature of gravity?

Jacobson (Phys. Rev. Lett. 75, 1260 (1995)): Einstein equations as an equation of state
Entropy balance relation S = 0E/T
Demand this relation to hold for all local Rindler horizons

0E = energy flux across the horizon and T = Ty = a/27w Unruh temperature
related to the local acceleration a

Assume a finite entropy per area ~ 1/L% associated with local Rindler horizon

The common view is that quantum properties of spacetime are responsible for
a finite horizon entropy density in the same way quantization of the
electromagnetic field leads to a finite black-body entropy

Michele Arzano — Accelerated observers and Planck-scale kinematics 3/25



A “quantum” Rindler space for accelerated observers at the Planck scale?

Michele Arzano — Accelerated observers and Planck-scale kinematics 4/25



A “quantum” Rindler space for accelerated observers at the Planck scale?

Goals of this talk:

Michele Arzano — Accelerated observers and Planck-scale kinematics 4/25



A “quantum” Rindler space for accelerated observers at the Planck scale?

Goals of this talk:

Describe a Rindler Planck-scale kinematics based on symmetry deformation
(Hopf algebra) with UV energy scale 1/¢

Michele Arzano — Accelerated observers and Planck-scale kinematics 4/25



A “quantum” Rindler space for accelerated observers at the Planck scale?

Goals of this talk:

Describe a Rindler Planck-scale kinematics based on symmetry deformation
(Hopf algebra) with UV energy scale 1/¢

Study density of states of deformed field and explore the possibility of a
finite horizon entropy density with ¢ ~ Lp
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A “quantum” Rindler space for accelerated observers at the Planck scale?

Goals of this talk:

e Describe a Rindler Planck-scale kinematics based on symmetry deformation
(Hopf algebra) with UV energy scale 1/¢

e Study density of states of deformed field and explore the possibility of a
finite horizon entropy density with ¢ ~ Lp

Work in collaboration with Master's student M. Laudonio
(Phys. Rev. D 97, no. 8, 085004 (2018))
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Accelerated observers

Four-velocity of observer with acceleration «
U* = (cosh at,sinh at, 0,0)

Lorentz boost by n = a7 of four-velocity of static Minkowski observer U* = (1, 0,0, 0)
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Accelerated worldline = Lorentz orbit of the vector (0,1/«)
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Accelerated observers

Four-velocity of observer with acceleration «
U* = (cosh at,sinh at, 0,0)

Lorentz boost by n = a7 of four-velocity of static Minkowski observer U* = (1, 0,0, 0)

Accelerated worldline = Lorentz orbit of the vector (0,1/«)

1

2 2

— () x() = o

[ How do we describe accelerated observers with different accelerations? )
Using a dilation generated by D = —i x*d,: a finite transformation of parameter ¢

(6.3) = (£,6) = (t,) =
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Rindler space

Define spatial Rindler coordinate £ in terms of the dilation parameter § = a¢
(with 1/a = [lenght])

— 1 ga8 g
{t—ae sinh an
— 1 a8
x = - e* coshan
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Rindler space

Define spatial Rindler coordinate £ in terms of the dilation parameter § = a¢

(with 1/a = [lenght])
=1 e sinh an

_ 1.3
x = - e* coshan

m
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Accelerated observers and the Weyl-Poincaré group

[Boosts and dilations in Minkowski space can be used to describe Rindler space J
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Weyl-Poincaré algebra in 1+1 dimensions

[P.P] =0, [D,N] =0
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[D,P.] = iP:, [D,P] = iP,
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Accelerated observers and the Weyl-Poincaré group

[Boosts and dilations in Minkowski space can be used to describe Rindler space ]

Weyl-Poincaré algebra in 1+1 dimensions

[P.P] =0, [D,N] =0
[N,P.] = iPc, [N,P.]=iP:
[D,P.] = iP:, [D,P] = iP,

This algebra contains two abelian subalgebras spanned by {P:, P} and {D, N}

Besides usual reps in terms of P; = i0: x we have an alternative reps in terms of
Rindler coordinates &, 7

P§:aD:Ia£7 Pn:aN:I'@n

Note the role of acceleration scale a in order to get the right dimensions for P: and P,
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Aside: the Unruh effect without space-time
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Aside: the Unruh effect without space-time
The simplest non-abelian Lie algebra
[D, P] = iP

relationship between boundary and thermal effects from representation theory
(work with Kowalski-Glikman: arXiv:1804.10550)
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Rindler coordinates and reps of the Weyl-Poincaré algebra
Representation of the Weyl-Poincaré generators in terms of (9¢, 9y)
Pe = iO¢
P, = idy
P
P, = ie”*(—sinh an , + cosh an d;)

ie™*(cosh an 8, — sinh an d)
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Representation of the Weyl-Poincaré generators in terms of (9¢, 9y)
Pe = iO¢
P, = idy
Py = ie”*(cosh an 8, — sinh an &)
P, = ie”*(—sinh an , + cosh an d;)
Inverting the last two relation we have
P, = e™(cosh an P; + sinh an P,)
P = e*(sinh an P; + cosh an Py)

Rindler translation generators are obtained from P; and Py in terms of
a boost by an and a dilation by a¢
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Rindler coordinates and reps of the Weyl-Poincaré algebra
Representation of the Weyl-Poincaré generators in terms of (9¢, 9y)
P = iO;
P, = idy
Py = ie”*(cosh an 8, — sinh an &)
P, = ie”*(—sinh an , + cosh an d;)
Inverting the last two relation we have
P, = e™(cosh an P; + sinh an P,)
P = e*(sinh an P; + cosh an Py)

Rindler translation generators are obtained from P; and Py in terms of
a boost by an and a dilation by a¢

Rindler mass shell obtained from mass Casimir

C=P;—P.=e (P2~ P}),
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Doppler shift and Rindler horizon

Four-velocity of Rindler observer with acceleration a

U" = (cosh an, sinh an)
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Four-velocity of Rindler observer with acceleration a
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U" is proportional to Rindler time-translation generator Py = e®(cosh an, sinh an)

W —ag pp
U =e Py
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Doppler shift and Rindler horizon
Four-velocity of Rindler observer with acceleration a
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U* = e P
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e Conserved energy of a photon w.r.t. the Rindler time is w = k, P}
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Doppler shift and Rindler horizon

Four-velocity of Rindler observer with acceleration a

U" = (cosh an, sinh an)
U" is proportional to Rindler time-translation generator Py = e®(cosh an, sinh an)
U* = e P
n

e Conserved energy of a photon w.r.t. the Rindler time is w = k, P}

e Energy measured by observer with four-velocity U*
we = kU = e™*w

e At £ = —oo i.e. on the light cone x = |t| the photon’s frequency will appear
infinitely blueshifted (in analogy with Schwarzschild horizon)

The Rindler horizon is described by an infinite contraction generated by D
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Mode counting in Minkowski space
Number of modes of a massless scalar field in a 3D box of size L

e Nodes on the wall of box

k,-:N,% where i=1,2,3, N =123,...
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e Infinitesimal volume in the space of wave numbers is dVi = W
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Mode counting in Minkowski space
Number of modes of a massless scalar field in a 3D box of size L

e Nodes on the wall of box

k,-:/v,% where i=1,2,3, N =123,...

. . . - . 2
e Infinitesimal volume in the space of wave numbers is dVi = W

e Infinitesimal density of states = dV divided by constant spacing of modes (%)3:

3
dn= L — K dk = L—Esz
2m
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Mode counting in Minkowski space
Number of modes of a massless scalar field in a 3D box of size L

e Nodes on the wall of box

ki = /v,-% where i=1,2,3, N =123,...
e Infinitesimal volume in the space of wave numbers is dVi = @

e Infinitesimal density of states = dV divided by constant spacing of modes (%)3:

3
dn= L — K dk = L—Esz
2m

by trivial integration leads to the known result for density of states in Minkowski space

L3E®
672

n(E) =

used to derive all thermodynamical properties of a free massless field.
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Mode counting in Rindler space

The wavenumber varies in space for Rindler observers k(&) = e *k
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Mode counting in Rindler space

The wavenumber varies in space for Rindler observers k(&) = e *k

e infinitesimal number of angular cycles: d¢ = (—f k(&)d¢ =

standing wave condition: f;mm k(&)e* de = f;min kdé = Nm

Michele Arzano — Accelerated observers and Planck-scale kinematics 12/25



Mode counting in Rindler space

The wavenumber varies in space for Rindler observers k(£) = e=*k

e infinitesimal number of angular cycles: d¢ = (—f k(&)d¢ =

standing wave condition: f;mm k(&)e* de = f;min kdé = Nm

o infinitesimal “volume” for £&-modes = dV/F(€) = e *¢dk
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Mode counting in Rindler space

The wavenumber varies in space for Rindler observers k(£) = e=*k

e infinitesimal number of angular cycles: d¢ = (—f k(&)d¢ =

standing wave condition: f;mm k(&)e* de = féme kdé = Nm

o infinitesimal “volume” for £&-modes = dV/F(€) = e *¢dk

e instead of constant volume 7/L = dk/dN for Minkwoski modes we have

k _dg

dN__ dN _dE  _ k
7 dk(&)

dk(€) d¢ dk(&)
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Mode counting in Rindler space
The wavenumber varies in space for Rindler observers k(£) = e=*k

e infinitesimal number of angular cycles: d¢ = % = k(&)d¢ =
standing wave condition: f; _ k(&)e* de = f; ~ kdé = Nm

o infinitesimal “volume” for £&-modes = dV/F(€) = e *¢dk
e instead of constant volume 7/L = dk/dN for Minkwoski modes we have
dN_ _ dN _d¢

dN_ _ dN _df _ k _dE_
dk(§) — dg dk(&§) T w dk(¢E)

e the infinitesimal number of £&-modes will be given by
dN
dk(£)

dn = dV{(€) 0 = X de
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Mode counting in Rindler space
The wavenumber varies in space for Rindler observers k(£) = e=*k

e infinitesimal number of angular cycles: d¢ = % = k(&)d¢ =
standing wave condition: f; _ k(&)e* de = f; ~ kdé = Nm

o infinitesimal “volume” for £&-modes = dV/F(€) = e *¢dk
e instead of constant volume 7/L = dk/dN for Minkwoski modes we have
dN_ _ dN _d¢

dN_ _ dN _df _ k _dE_
dk(§) — dg dk(&§) T w dk(¢E)

e the infinitesimal number of £&-modes will be given by
dN
dk(£)

Density of states: 34+1 Minkowski vs. Rindler

dn = dV{(€) 0 = X de

L%k, ke
272

dny = — k“dk Vs dng =

k
27 dkc . dg
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Area law from flat space

Using Rindler dispersion relation E? = k? 4+ €®* k2 we integrate dng over k.

) E31® 5.
/ 2 2 _ —2a
dky ki \/E? — k3 2% = 62 € d¢.

a

L2 Ee—
dne(€) = - dE /0
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Area law from flat space

Using Rindler dispersion relation E? = k? 4+ €®* k2 we integrate dng over k.

12 Ee—2¢ E312 _, ¢
an(é'): ﬁdf/o dkj_ kJ_q/Ez—kiezag = We d£

With a “brick wall” at ., we obtain density of states as function of energy

372 log(aR)/a 372
nr(E) = = dee 6= EL L 2 L]
R 672 1272 a (aR)?

a

Emin

Michele Arzano — Accelerated observers and Planck-scale kinematics

13/25



Area law from flat space

Using Rindler dispersion relation E? = k? 4+ €®* k2 we integrate dng over k.

12 Ee—2¢ E312 _, ¢
an(é'): ﬁdf/o dkj_ kJ_q/Ez—kieza5 = We d£

With a “brick wall” at ., we obtain density of states as function of energy

372 log(aR)/a 372
nr(E) = = dee 6= EL L 2 L]
R 672 1272 a (aR)?

a

Emin

From log Q = 8 [, dEeg(EE_)1 calculate entropy, which scales as !

2 2
m L {e*a&mfﬂ = ﬁ} = Suai + IR box contribution ,

T 4538
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Area law from flat space

Using Rindler dispersion relation E? = k? 4+ €®* k2 we integrate dng over k.

12 Ee—2¢ E312 _, ¢
an(é'): ﬁdf/o dkj_ kL\/Ez—kiezag = We d£

With a “brick wall” at ., we obtain density of states as function of energy

372 log(aR)/a 372
nr(E) = = dee 6= EL L 2 L]
R 672 1272 a (aR)?

a

Emin

From log Q = ,Bfooo dEe[,'(EE_)1 calculate entropy, which scales as !

2 g2
m L {efzaém"" - ﬁ} = Swan + IR box contribution

T 4538

For 8 ~ 1/ Ty ~ 27/a, Emin can be fixed = Bekenstein-Hawking entropy density

Owall = Swa///l—2 = m
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The covariant recipe for counting states

State counting can be recast in a covariant framework by considering
state space of a massless relativistic field

covariant momentum—space volume
—N—
dn ~ 2Edtdx’6(t) x d*p&(C)B(E)
N—————

covariant space volume
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The covariant recipe for counting states

State counting can be recast in a covariant framework by considering
state space of a massless relativistic field

covariant momentum—space volume
—N—
dn ~ 2Edtdx’6(t) x d*p&(C)B(E)
N—————

covariant space volume

In Minkwoski space, integrating over a spatial volume V = [3

L3E3

m(E) = Ca

ﬁ/Ed4p2po5(p2)9(po) =
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The covariant recipe for counting states
State counting can be recast in a covariant framework by considering
state space of a massless relativistic field

covariant momentum—space volume
—N—
dn ~ 2Edtdx’6(t) x d*p&(C)B(E)
N——————

covariant space volume

In Minkwoski space, integrating over a spatial volume V = [3

Vv s ) _ L*F?
w(E) = oy [ 4020567 0mm) =
For a Rindler field
vV o V|, 4rm & 2,
mw(E) = o5 /R d¢ / dpydpcdpl 2, 3(C)0(p) = 5555 [ dgen
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The twisted Weyl-Poincaré algebra

The Weyl-Poincaré algebra pw(3,1) in 3 + 1 dimensions
[Pu,P.]=0, [Pu,M,]= i(nuppv - mep)

[MNV7 Mpo] = i(mm My — Mo Myp + 1vpMup — nVPMNU)
[D7 P/;,] = i'DN ’ [D M/“/] =0
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The twisted Weyl-Poincaré algebra

The Weyl-Poincaré algebra pw(3,1) in 3 + 1 dimensions
[Pu,P.]=0, [Pu,M,]= i(nupPV - nHVPP)
[Muu: Mpo] = i(mm Moy — Mo Mup + MupMup — nVPMNU)
[D7 ’DH] = i'DN ’ [D MHV] =0
Consider deformation by Jordanian twist (Aschieri, Borowiec and Pachol, JHEP 1710, 152 (2017))
w” = fo(W)f,, W epw(3,1)
where F = f* ® fo, = exp(—iD ® o), o = log (1 + ¢P;) and Fl=fagf,
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The twisted Weyl-Poincaré algebra

The Weyl-Poincaré algebra pw(3,1) in 3 + 1 dimensions
[Pu,P.]=0, [Pu,M,]= i(nupPV *WWPP)
[Muu: Mpo] = i(mm Moy — Mo Mup + MupMup — nVPMHU)
[D7 ’DH] = i'DN ’ [D MNV} =0
Consider deformation by Jordanian twist (Aschieri, Borowiec and Pachol, JHEP 1710, 152 (2017))
w” = fo(W)f,, W epw(3,1)
where F = f* @ f, = exp(—iD ® o), 0 = log (14 £Py) and F~ ' =fe®f,

¢ deformation parameter ~ L,

The resulting twisted generators

P
P]-' _ I M]—'

b1 4eRy’ v
very similar to the “non-linear” redefinition of translation generators used by Magueijo
and Smolin in their early DSR model (Phys. Rev. Lett. 88, 100403 (2002))

ny oy
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The twisted Weyl-Poincaré algebra (continued)

In terms of the twisted commutator
W7, V7 ]r = WP V7 — (R(V))7 (Ra(W))”.

the twisted generators obey an undeformed Weyl-Poincaré algebra.
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The twisted Weyl-Poincaré algebra (continued)
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W7, V7 ]r = WV — (R(V))T (Ra(W))”.
the twisted generators obey an undeformed Weyl-Poincaré algebra.
This translates in the following deformed commutators
M7, P71 =i(nowP;. — Py ) — i€8,08,iP; PY
[D7, P} =iP] —itP] Py

while all other commutators remain undeformed.
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The twisted Weyl-Poincaré algebra (continued)

In terms of the twisted commutator
W7, V7 ]r = WV — (R(V))T (Ra(W))”.
the twisted generators obey an undeformed Weyl-Poincaré algebra.
This translates in the following deformed commutators

M7, P71 =i(nowP;. — Py ) — i€8,08,iP; PY
[D7, P} =iP] —itP] Py

while all other commutators remain undeformed.

The mass Casimir C = P, P* in terms of the twisted translation generators P; becomes

(PuP")”

F_
C =u-my

At the algebraic level this is all we need to go and play the “DSR game”
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DSR finite boosts

Twisted DSR finite boosts in the 1-direction

From the deformed algebra we have

dw

_ _ w® cosh ¢ + k? sinh
oo = =iy, w] = k(1= ) (@) = ¢A 1 sinh ¢
dky . 1 w?sinh ¢ + k? cosh
Gg =~ k] = (0 — ki) — k() = ¢A i il
dk; . 0
T = Nkl = thaki, i=23 ki(¢):%, i=2,3

where | A=1— 4w’ + 0u° cosh ¢ + €k sinh ¢
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DSR finite boosts

Twisted DSR finite boosts in the 1-direction

From the deformed algebra we have

dw

_ _ w® cosh ¢ + k? sinh
oo = =iy, w] = k(1= ) (@) = ¢A 1 sinh ¢
dky . 1 w?sinh ¢ + k? cosh
Gg =~ k] = (0 — ki) — k() = ¢A i il
dk; . 0
T = Nkl = thaki, i=23 ki(¢):%, i=2,3

where | A=1— 4w’ + 0u° cosh ¢ + €k sinh ¢

Boosts saturate at the Planck scale!

lim w(d)):%, lim kl:%7 d)lim ki=0
A — 00

Pp—00 P—00
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Twisted dilations

The same procedure can be used to derive the twisted dilation transformation

dw o
75 = Dw] = w(l — ) 0= o @ = by
dk; . KO
= —i[D, ki] = ki(1 — fw) ki(6) = :

T W+ (1 — woh)e"

For § - —oo both energy and momentum vanish, as in the undeformed case
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Twisted dilations

The same procedure can be used to derive the twisted dilation transformation

dw o
75 = Dw] = w(l — ) 0= o @ = by
dk; . KO
= —i[D, ki] = ki(1 — fw) ki(6) = :

T W+ (1 — woh)e"

For § - —oo both energy and momentum vanish, as in the undeformed case

For 6 — oo dilation transformations saturate at the Planck scale!

0
lim w(5) :% lim k(5) = %

§— o0 §—00 - fuO
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Deformed Rindler modes and finite blueshift

Rindler translation generators associated to accelerated observers in the 1-direction
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Deformed Rindler modes and finite blueshift

Rindler translation generators associated to accelerated observers in the 1-direction

Act on Pf with deformed boost in the 1-direction and a dilation in the (7, £)-plane
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Deformed Rindler modes and finite blueshift

Rindler translation generators associated to accelerated observers in the 1-direction

Act on Pf with deformed boost in the 1-direction and a dilation in the (7, £)-plane

pF _ Pg cosh an + P{ sinh an
" 0P cosh an + £P{ sinh an -+ (1 — PJ £)e—2¢
Pg sinh an + P{ cosh an

e
€ 7 UP7 cosh an + (P{ sinhan + (1 — P £)e—%
P7
P’ ' i=2,3.

T 1—(PJ + (P coshan + (P{ sinhan '
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Deformed Rindler modes and finite blueshift

Rindler translation generators associated to accelerated observers in the 1-direction
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e
€ 7 UP7 cosh an + (P{ sinhan + (1 — P £)e—%
P7
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Deformed blueshift = inverse dilation

. w
7 lw+ (1— tw)ex
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Deformed Rindler modes and finite blueshift

Rindler translation generators associated to accelerated observers in the 1-direction

Act on P,f with deformed boost in the 1-direction and a dilation in the (7, £)-plane

pF _ Pg cosh an + P{ sinh an
" 0P cosh an + £P{ sinh an -+ (1 — PJ £)e—2¢
Pg sinh an + P{ cosh an

e
€ 7 UP7 cosh an + (P{ sinhan + (1 — P £)e—%
P7
P’ ' i=2,3.

T 1—(PJ + (P coshan + (P{ sinhan '

Deformed blueshift = inverse dilation

. w
7 lw+ (1— tw)ex

Finite blueshift at the accelerated horizon £ — —oco!
Could this act as a “covariant brick wall”?
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Counting modes in twisted Poincaré

Warm up: mode counting for a field in twisted Poincaré

n(E) = % / du(p) 290 6(C) (o)
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Counting modes in twisted Poincaré

Warm up: mode counting for a field in twisted Poincaré

n(E) = % / du(p) 290 6(C) (o)

Which momentum space measure?
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Counting modes in twisted Poincaré
Warm up: mode counting for a field in twisted Poincaré

n(E) = % / du(p) 290 6(C) (o)

Which momentum space measure?
To LIV or not to LIV? (Gubitosi and Magueijo, Class. Quant. Grav. 33, no. 11, 115021 (2016))

Breaks Lorentz Covariant under deformed boosts

).
d*p
d =d* d ==
u(p)Liv p ‘ n(p)c (1— Cpo)
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Counting modes in twisted Poincaré
Warm up: mode counting for a field in twisted Poincaré

n(E) = % / du(p) 290 6(C) (o)

Which momentum space measure?
To LIV or not to LIV? (Gubitosi and Magueijo, Class. Quant. Grav. 33, no. 11, 115021 (2016))

Breaks Lorentz Covariant under deformed boosts

).
d*p
d =d* d ==
u(p)Liv p ‘ n(p)c (1— Cpo)

The resulting density of states are

2v [E® (E*  PPE°
Ouv= g |55 ]
n(E)c = (2‘;)2%3 [451(35‘_;)22) — 2log(1 —zE)] :
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Finte density of states fo LIV measure

Boosts saturate at 1/¢, maximal energy, what about density of states?

lim n(E)c = o0
E—1/¢
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Finte density of states fo LIV measure

Boosts saturate at 1/¢, maximal energy, what about density of states?

lim n(E)c = oo
E—1/¢

However using the LIV measure

v 1

lim n(E)ury = — ——
im Ery = o 156

E—1/

we have a finite number of states all the way up to the Planck scale
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Deformed Rindler: brick-wall from twist?

Look at twisted generalization of

Vi
n(E) = (2m)3

/ d¢ / dpydpedpl 2p, e 5(C)0(py) -
R
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Deformed Rindler: brick-wall from twist?

Look at twisted generalization of

Vi
i(5) = (2m)3

[ de [ dondpedot 2p,e 7 5(C)oCpr).
R

Sparing you the gruesome details the final result is

_ v Pn(L — £py)*e®*6(py — wp)
I'I(E) - (271')3 \/]R d&/ dM(P'mPE;PL) (an L (1 _ gpn)eag)(pneaﬁ +£P§(1 _ eaﬁ)) G(P’q)

where wp = on-shell energy obtained from deformed Rindler dispersion relation

87235 ,
¢ = Ay —(Py Y+ (PL) + (P (P e+ (1 —tP))e 5)2]
n
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Brick-wall from twist? Only if LIV!

Calculate density of states in fully covariant picture

Vi e 2%mn [E3 ¢E*

"Ee=tm— |3 2

still need a “brick-wall” regulator &min ...

0PES
5

)
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Brick-wall from twist? Only if LIV!

Calculate density of states in fully covariant picture

vV, e~ 23 min 53 3 E N P2 E®

"(E)C:W a 3 2 T

still need a “brick-wall” regulator &min ...

If we LIV we get a finite density of states!

V. 11
n(E)Lry = _@éﬁ log(1 — ¢E),

a bitter win...
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Bekenstein-Hawking entropy from “twisted brick wall”
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Bekenstein-Hawking entropy from “twisted brick wall”

Evaluate the entropy associated to n(E)L1v

Consider the logarithm of the deformed partition function

1/¢ n(E
log Q = /B/ dE [iE( )
0 eT—?E — 1
(deformed B-E distribution natural choice determined by the twist map P = :T“PU)
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Bekenstein-Hawking entropy from “twisted brick wall”

Evaluate the entropy associated to n(E)L1v

Consider the logarithm of the deformed partition function

BE
T—¢E — 1

1/¢
IogQ:,B/ dEﬂ
0 e

(deformed B-E distribution natural choice determined by the twist map Pf =5

= ir;)

2?” we obtain

Setting 8 = %U

V. Via ¢(3) V) a?
Suiv =

144702 ¢ 3274 21607 +00)

at leading order, with ¢ = % leads to the Bekenstein-Hawking entropy...
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Conclusions & outlook

e Use Weyl-Poincaré (WP) algebra to describe accelerated observers and
horizons
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Conclusions & outlook

e Use Weyl-Poincaré (WP) algebra to describe accelerated observers and
horizons

e Look at deformations of WP algebra to probe Planck-scale features of Rindler

space
e For the particular model of twisted WP algebra two interesting results:

» Finite blueshift at the horizon

> Finite density of states (only with LIV measure)

WHAT'S NEXT?

e Rindler space locally describes observers under a uniform gravitational field...
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Conclusions & outlook

e Use Weyl-Poincaré (WP) algebra to describe accelerated observers and
horizons

e Look at deformations of WP algebra to probe Planck-scale features of Rindler

space
e For the particular model of twisted WP algebra two interesting results:

» Finite blueshift at the horizon

> Finite density of states (only with LIV measure)

WHAT'S NEXT?

e Rindler space locally describes observers under a uniform gravitational field...

e Planckian aspects of Unruh and (Hawking) quantum radiance.
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