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What is the nature of the Bekenstein-Hawking entropy?

SBH =
A

4L2
p

• ’t Hooft showed that SBH can be viewed as thermal entropy of a quantum field
near a Schwarzschild horizon (Nucl. Phys. B 256, 727 (1985))

• In local QFT a UV regulator is needed: vanishing field at small distance from
horizon: a “brick wall”

• Do not need a black hole for such area law!

• Susskind and Uglum (Phys. Rev. D 50, 2700 (1994)) derived a similar result for Rindler
space (accelerated observers) by considering a BH in the limit of infinite radius

⇓

Upon introduction of a “brick wall” regulator obtain entropy density ∼ 1/L2
P

Michele Arzano — Accelerated observers and Planck-scale kinematics 2/25



What is the nature of the Bekenstein-Hawking entropy?

SBH =
A

4L2
p

• ’t Hooft showed that SBH can be viewed as thermal entropy of a quantum field
near a Schwarzschild horizon (Nucl. Phys. B 256, 727 (1985))

• In local QFT a UV regulator is needed: vanishing field at small distance from
horizon: a “brick wall”

• Do not need a black hole for such area law!

• Susskind and Uglum (Phys. Rev. D 50, 2700 (1994)) derived a similar result for Rindler
space (accelerated observers) by considering a BH in the limit of infinite radius

⇓

Upon introduction of a “brick wall” regulator obtain entropy density ∼ 1/L2
P

Michele Arzano — Accelerated observers and Planck-scale kinematics 2/25



What is the nature of the Bekenstein-Hawking entropy?

SBH =
A

4L2
p

• ’t Hooft showed that SBH can be viewed as thermal entropy of a quantum field
near a Schwarzschild horizon (Nucl. Phys. B 256, 727 (1985))

• In local QFT a UV regulator is needed: vanishing field at small distance from
horizon: a “brick wall”

• Do not need a black hole for such area law!

• Susskind and Uglum (Phys. Rev. D 50, 2700 (1994)) derived a similar result for Rindler
space (accelerated observers) by considering a BH in the limit of infinite radius

⇓

Upon introduction of a “brick wall” regulator obtain entropy density ∼ 1/L2
P

Michele Arzano — Accelerated observers and Planck-scale kinematics 2/25



What is the nature of the Bekenstein-Hawking entropy?

SBH =
A

4L2
p

• ’t Hooft showed that SBH can be viewed as thermal entropy of a quantum field
near a Schwarzschild horizon (Nucl. Phys. B 256, 727 (1985))

• In local QFT a UV regulator is needed: vanishing field at small distance from
horizon: a “brick wall”

• Do not need a black hole for such area law!

• Susskind and Uglum (Phys. Rev. D 50, 2700 (1994)) derived a similar result for Rindler
space (accelerated observers) by considering a BH in the limit of infinite radius

⇓

Upon introduction of a “brick wall” regulator obtain entropy density ∼ 1/L2
P

Michele Arzano — Accelerated observers and Planck-scale kinematics 2/25



What is the nature of the Bekenstein-Hawking entropy?

SBH =
A

4L2
p

• ’t Hooft showed that SBH can be viewed as thermal entropy of a quantum field
near a Schwarzschild horizon (Nucl. Phys. B 256, 727 (1985))

• In local QFT a UV regulator is needed: vanishing field at small distance from
horizon: a “brick wall”

• Do not need a black hole for such area law!

• Susskind and Uglum (Phys. Rev. D 50, 2700 (1994)) derived a similar result for Rindler
space (accelerated observers) by considering a BH in the limit of infinite radius

⇓

Upon introduction of a “brick wall” regulator obtain entropy density ∼ 1/L2
P

Michele Arzano — Accelerated observers and Planck-scale kinematics 2/25



What is the nature of the Bekenstein-Hawking entropy?

SBH =
A

4L2
p

• ’t Hooft showed that SBH can be viewed as thermal entropy of a quantum field
near a Schwarzschild horizon (Nucl. Phys. B 256, 727 (1985))

• In local QFT a UV regulator is needed: vanishing field at small distance from
horizon: a “brick wall”

• Do not need a black hole for such area law!

• Susskind and Uglum (Phys. Rev. D 50, 2700 (1994)) derived a similar result for Rindler
space (accelerated observers) by considering a BH in the limit of infinite radius

⇓

Upon introduction of a “brick wall” regulator obtain entropy density ∼ 1/L2
P

Michele Arzano — Accelerated observers and Planck-scale kinematics 2/25



Thermodynamic nature of gravity?

Jacobson (Phys. Rev. Lett. 75, 1260 (1995)): Einstein equations as an equation of state

• Entropy balance relation δS = δE/T

• Demand this relation to hold for all local Rindler horizons

• δE = energy flux across the horizon and T = TU = a/2π Unruh temperature
related to the local acceleration a

⇒ Assume a finite entropy per area ∼ 1/L2
P associated with local Rindler horizon

The common view is that quantum properties of spacetime are responsible for
a finite horizon entropy density in the same way quantization of the

electromagnetic field leads to a finite black-body entropy
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A “quantum” Rindler space for accelerated observers at the Planck scale?

Goals of this talk:

• Describe a Rindler Planck-scale kinematics based on symmetry deformation
(Hopf algebra) with UV energy scale 1/`

• Study density of states of deformed field and explore the possibility of a
finite horizon entropy density with ` ∼ LP

Work in collaboration with Master’s student M. Laudonio
(Phys. Rev. D 97, no. 8, 085004 (2018))
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Accelerated observers

Four-velocity of observer with acceleration α

Uµ = (coshατ, sinhατ, 0, 0)

Lorentz boost by η = ατ of four-velocity of static Minkowski observer Uµ = (1, 0, 0, 0)

Accelerated worldline = Lorentz orbit of the vector (0, 1/α)

− t(τ)2 + x(τ)2 =
1

α2

How do we describe accelerated observers with different accelerations?

Using a dilation generated by D = −i xµ∂µ: a finite transformation of parameter δ

(t, x)→ (t′, x ′) = eδ(t, x) =⇒ α→ α′ = e−δα
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Rindler space

Define spatial Rindler coordinate ξ in terms of the dilation parameter δ = a ξ
(with 1/a = [lenght]) {

t = 1
a
eaξ sinh aη

x = 1
a
eaξ cosh aη
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Accelerated observers and the Weyl-Poincaré group

Boosts and dilations in Minkowski space can be used to describe Rindler space

Weyl-Poincaré algebra in 1+1 dimensions

[
Pt ,Px

]
= 0 ,

[
D,N

]
= 0[

N,Pt

]
= iPx ,

[
N,Px

]
= iPt[

D,Pt

]
= iPt ,

[
D,Px

]
= iPx

This algebra contains two abelian subalgebras spanned by {Pt ,Px} and {D,N}

Besides usual reps in terms of Pt,x = i∂t,x we have an alternative reps in terms of
Rindler coordinates ξ , η

Pξ = aD = i∂ξ , Pη = aN = i∂η

Note the role of acceleration scale a in order to get the right dimensions for Pξ and Pη
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Aside: the Unruh effect without space-time

The simplest non-abelian Lie algebra

[
D,P

]
= iP

relationship between boundary and thermal effects from representation theory

(work with Kowalski-Glikman: arXiv:1804.10550)
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Rindler coordinates and reps of the Weyl-Poincaré algebra

Representation of the Weyl-Poincaré generators in terms of (∂ξ, ∂η)

Pξ = i∂ξ

Pη = i∂η

Pt = ie−aξ(cosh aη ∂η − sinh aη ∂ξ)

Px = ie−aξ(− sinh aη ∂η + cosh aη ∂ξ)

Inverting the last two relation we have

Pη = eaξ(cosh aη Pt + sinh aη Px)

Pξ = eaξ(sinh aη Pt + cosh aη Px)

Rindler translation generators are obtained from Pt and Px in terms of
a boost by a η and a dilation by a ξ

Rindler mass shell obtained from mass Casimir

C = P2
0 − P2

x = e−2aξ(P2
η − P2

ξ) ,
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Doppler shift and Rindler horizon

Four-velocity of Rindler observer with acceleration a

Uµ = (cosh aη , sinh aη)

Uµ is proportional to Rindler time-translation generator Pµη = eaξ(cosh aη , sinh aη)

Uµ = e−aξPµη

• Conserved energy of a photon w.r.t. the Rindler time is ω = kµP
µ
η

• Energy measured by observer with four-velocity Uµ

ωξ = kµU
µ = e−aξω

• At ξ = −∞ i.e. on the light cone x = |t| the photon’s frequency will appear
infinitely blueshifted (in analogy with Schwarzschild horizon)

The Rindler horizon is described by an infinite contraction generated by D
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Mode counting in Minkowski space

Number of modes of a massless scalar field in a 3D box of size L

• Nodes on the wall of box

ki = Ni
π

L
where i = 1, 2, 3 , Ni = 1, 2, 3, . . .

• Infinitesimal volume in the space of wave numbers is dVk = 4πk2dk
8

• Infinitesimal density of states ⇒ dVk divided by constant spacing of modes
(
π
L

)3
:

dn =
L3

2π2
k2dk =

L3

2π2
E 2dE ,

by trivial integration leads to the known result for density of states in Minkowski space

n(E) =
L3E 3

6π2

used to derive all thermodynamical properties of a free massless field.
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• Infinitesimal volume in the space of wave numbers is dVk = 4πk2dk
8

• Infinitesimal density of states ⇒ dVk divided by constant spacing of modes
(
π
L

)3
:

dn =
L3

2π2
k2dk =

L3

2π2
E 2dE ,

by trivial integration leads to the known result for density of states in Minkowski space

n(E) =
L3E 3

6π2
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Mode counting in Rindler space

The wavenumber varies in space for Rindler observers k(ξ) = e−aξk

• infinitesimal number of angular cycles: dφ = 2πdξ
λ(ξ)

= k(ξ)dξ =⇒

standing wave condition:
∫ L

ξmin
k(ξ)eaξ dξ =

∫ L

ξmin
k dξ = Nπ

• infinitesimal “volume” for ξ-modes =⇒ dV R
k (ξ) = e−aξdk

• instead of constant volume π/L = dk/dN for Minkwoski modes we have

dN
dk(ξ)

= dN
dξ

dξ
dk(ξ)

= k
π

dξ
dk(ξ)

• the infinitesimal number of ξ-modes will be given by

dn = dV R
k (ξ)

dN

dk(ξ)
=

k

π
dξ

Density of states: 3+1 Minkowski vs. Rindler

dnM =
L3

2π2
k2dk vs dnR =

L2 k⊥ kξ
2π2

dk⊥dξ

Michele Arzano — Accelerated observers and Planck-scale kinematics 12/25



Mode counting in Rindler space

The wavenumber varies in space for Rindler observers k(ξ) = e−aξk

• infinitesimal number of angular cycles: dφ = 2πdξ
λ(ξ)

= k(ξ)dξ =⇒

standing wave condition:
∫ L

ξmin
k(ξ)eaξ dξ =

∫ L

ξmin
k dξ = Nπ

• infinitesimal “volume” for ξ-modes =⇒ dV R
k (ξ) = e−aξdk

• instead of constant volume π/L = dk/dN for Minkwoski modes we have

dN
dk(ξ)

= dN
dξ

dξ
dk(ξ)

= k
π

dξ
dk(ξ)

• the infinitesimal number of ξ-modes will be given by

dn = dV R
k (ξ)

dN

dk(ξ)
=

k

π
dξ

Density of states: 3+1 Minkowski vs. Rindler

dnM =
L3

2π2
k2dk vs dnR =

L2 k⊥ kξ
2π2

dk⊥dξ

Michele Arzano — Accelerated observers and Planck-scale kinematics 12/25



Mode counting in Rindler space

The wavenumber varies in space for Rindler observers k(ξ) = e−aξk

• infinitesimal number of angular cycles: dφ = 2πdξ
λ(ξ)

= k(ξ)dξ =⇒

standing wave condition:
∫ L

ξmin
k(ξ)eaξ dξ =

∫ L

ξmin
k dξ = Nπ

• infinitesimal “volume” for ξ-modes =⇒ dV R
k (ξ) = e−aξdk

• instead of constant volume π/L = dk/dN for Minkwoski modes we have

dN
dk(ξ)

= dN
dξ

dξ
dk(ξ)

= k
π

dξ
dk(ξ)

• the infinitesimal number of ξ-modes will be given by

dn = dV R
k (ξ)

dN

dk(ξ)
=

k

π
dξ

Density of states: 3+1 Minkowski vs. Rindler

dnM =
L3

2π2
k2dk vs dnR =

L2 k⊥ kξ
2π2

dk⊥dξ

Michele Arzano — Accelerated observers and Planck-scale kinematics 12/25



Mode counting in Rindler space

The wavenumber varies in space for Rindler observers k(ξ) = e−aξk

• infinitesimal number of angular cycles: dφ = 2πdξ
λ(ξ)

= k(ξ)dξ =⇒

standing wave condition:
∫ L

ξmin
k(ξ)eaξ dξ =

∫ L

ξmin
k dξ = Nπ

• infinitesimal “volume” for ξ-modes =⇒ dV R
k (ξ) = e−aξdk

• instead of constant volume π/L = dk/dN for Minkwoski modes we have

dN
dk(ξ)

= dN
dξ

dξ
dk(ξ)

= k
π

dξ
dk(ξ)

• the infinitesimal number of ξ-modes will be given by

dn = dV R
k (ξ)

dN

dk(ξ)
=

k

π
dξ

Density of states: 3+1 Minkowski vs. Rindler

dnM =
L3

2π2
k2dk vs dnR =

L2 k⊥ kξ
2π2

dk⊥dξ

Michele Arzano — Accelerated observers and Planck-scale kinematics 12/25



Mode counting in Rindler space

The wavenumber varies in space for Rindler observers k(ξ) = e−aξk

• infinitesimal number of angular cycles: dφ = 2πdξ
λ(ξ)

= k(ξ)dξ =⇒

standing wave condition:
∫ L

ξmin
k(ξ)eaξ dξ =

∫ L

ξmin
k dξ = Nπ

• infinitesimal “volume” for ξ-modes =⇒ dV R
k (ξ) = e−aξdk

• instead of constant volume π/L = dk/dN for Minkwoski modes we have

dN
dk(ξ)

= dN
dξ

dξ
dk(ξ)

= k
π

dξ
dk(ξ)

• the infinitesimal number of ξ-modes will be given by

dn = dV R
k (ξ)

dN

dk(ξ)
=

k

π
dξ

Density of states: 3+1 Minkowski vs. Rindler

dnM =
L3

2π2
k2dk vs dnR =

L2 k⊥ kξ
2π2

dk⊥dξ

Michele Arzano — Accelerated observers and Planck-scale kinematics 12/25



Mode counting in Rindler space

The wavenumber varies in space for Rindler observers k(ξ) = e−aξk

• infinitesimal number of angular cycles: dφ = 2πdξ
λ(ξ)

= k(ξ)dξ =⇒

standing wave condition:
∫ L

ξmin
k(ξ)eaξ dξ =

∫ L

ξmin
k dξ = Nπ

• infinitesimal “volume” for ξ-modes =⇒ dV R
k (ξ) = e−aξdk

• instead of constant volume π/L = dk/dN for Minkwoski modes we have

dN
dk(ξ)

= dN
dξ

dξ
dk(ξ)

= k
π

dξ
dk(ξ)

• the infinitesimal number of ξ-modes will be given by

dn = dV R
k (ξ)

dN

dk(ξ)
=

k

π
dξ

Density of states: 3+1 Minkowski vs. Rindler

dnM =
L3

2π2
k2dk vs dnR =

L2 k⊥ kξ
2π2

dk⊥dξ

Michele Arzano — Accelerated observers and Planck-scale kinematics 12/25



Area law from flat space

Using Rindler dispersion relation E 2 = k2 + e2aξk2
⊥ we integrate dnR over k⊥

dnR(ξ) =
L2

2π2
dξ

∫ Ee−aξ

0

dk⊥ k⊥

√
E 2 − k2

⊥e
2aξ =

E 3 L2

6π2
e−2aξ dξ .

With a “brick wall” at ξmin we obtain density of states as function of energy

nR(E) =
E 3 L2

6π2

∫ log(aR)/a

ξmin

dξ e−2aξ =
E 3 L2

12π2

1

a

[
e−2aξmin − 1

(aR)2

]
.

From logQ = β
∫∞
0

dE n(E)

eβE−1
calculate entropy, which scales as L2!

S =
π2

45

L2

aβ3

[
e−2aξmin − 1

(aR)2

]
= Swall + IR box contribution ,

For β ∼ 1/TU ∼ 2π/a, ξmin can be fixed⇒ Bekenstein-Hawking entropy density

σwall = Swall/L
2 =

1

4L2
p
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The covariant recipe for counting states

State counting can be recast in a covariant framework by considering
state space of a massless relativistic field

dn ∼ 2E dt dx3 δ(t)︸ ︷︷ ︸
covariant space volume

×

covariant momentum−space volume︷ ︸︸ ︷
d4p δ(C) θ(E)

In Minkwoski space, integrating over a spatial volume V = L3

nM(E) =
V

(2π)3

∫
E

d4p 2p0 δ(p2) θ(p0) =
L3E 3

6π2

For a Rindler field

nR(E) =
V⊥

(2π)3

∫
R
dξ

∫
dpηdpξdp

2
⊥ 2pηe

−2aξ δ(C)θ(pη) =
V⊥

(2π)3
4π

3
E 3

∫ ∞
−∞

dξ e−2aξ
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The twisted Weyl-Poincaré algebra

The Weyl-Poincaré algebra pw(3, 1) in 3 + 1 dimensions

[Pµ,Pν ] = 0 , [Pµ,Mρν ] = i
(
ηµρPν − ηµνPρ

)[
Mµν ,Mρσ

]
= i
(
ηµσMνρ − ηµσMνρ + ηνρMµρ − ηνρMµσ

)
[D,Pµ] = iPµ ,

[
D,Mµν

]
= 0

Consider deformation by Jordanian twist (Aschieri, Borowiec and Pachol, JHEP 1710, 152 (2017))

WF = ¯f α(W )f̄α , W ∈ pw(3, 1)

where F = f α ⊗ fα = exp(−iD ⊗ σ) , σ = log (1 + `P0) and F−1 = ¯f α ⊗ f̄α

` deformation parameter ∼ Lp

The resulting twisted generators

PFµ =
Pµ

1 + `P0
, MFµν = Mµν , DF = D.

very similar to the “non-linear” redefinition of translation generators used by Magueijo
and Smolin in their early DSR model (Phys. Rev. Lett. 88, 190403 (2002))
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The twisted Weyl-Poincaré algebra (continued)

In terms of the twisted commutator

[WF ,VF ]F = WFVF − (R̄α(V ))F (R̄α(W ))F .

the twisted generators obey an undeformed Weyl-Poincaré algebra.

This translates in the following deformed commutators

[MFµν ,P
F
ρ ] = i

(
ηρνP

F
µ − ηρµPFν

)
− i`δµ0δνiP

F
ρ PFi

[DF ,PFµ ] = iPFµ − i`PFµ PF0

while all other commutators remain undeformed.

The mass Casimir C = PµP
µ in terms of the twisted translation generators PFµ becomes

CF =
(PµP

µ)F

(1− `PF0 )2
.

At the algebraic level this is all we need to go and play the “DSR game”
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DSR finite boosts

Twisted DSR finite boosts in the 1-direction

From the deformed algebra we have

dω

dφ
= −i [N1, ω] = k1(1− `ω)

dk1
dφ

= −i [N1, k1] = (ω − `k1k1)

dki
dφ

= −i [N1, ki ] = `k1ki , i = 2, 3

=⇒

ω(φ) =
ω0 coshφ+ k0

1 sinhφ

A

k1(φ) =
ω0 sinhφ+ k0

1 coshφ

A

ki (φ) =
k0
i

A
, i = 2, 3

where A = 1− `ω0 + `ω0 coshφ+ `k0
1 sinhφ

Boosts saturate at the Planck scale!

lim
φ→∞

ω(φ) =
1

`
, lim
φ→∞

k1 =
1

`
, lim
φ→∞

ki = 0
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Twisted dilations

The same procedure can be used to derive the twisted dilation transformation

dω

dδ
= −i [D, ω] = ω(1− `ω)

dki
dδ

= −i [D, ki ] = ki (1− `ω)

=⇒
ω(δ) =

ω0

ω0`+ (1− ω0`)e−δ

ki (δ) =
k0
i

ω0`+ (1− ω0`)e−δ

For δ → −∞ both energy and momentum vanish, as in the undeformed case

For δ →∞ dilation transformations saturate at the Planck scale!

lim
δ→∞

ω(δ) =
1

`
lim
δ→∞

ki (δ) =
k0
i

`ω0
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Deformed Rindler modes and finite blueshift

Rindler translation generators associated to accelerated observers in the 1-direction

Act on PFµ with deformed boost in the 1-direction and a dilation in the (η, ξ)-plane

PFη =
PF0 cosh aη + PF1 sinh aη

`PF0 cosh aη + `PF1 sinh aη + (1− PF0 `)e
−aξ

PFξ =
PF0 sinh aη + PF1 cosh aη

`PF0 cosh aη + `PF1 sinh aη + (1− PF0 `)e
−aξ

PFi =
PFi

1− `PF0 + `PF0 cosh aη + `PF1 sinh aη
, i = 2, 3.

Deformed blueshift = inverse dilation

ωξ =
ω

`ω + (1− `ω)eaξ
.

Finite blueshift at the accelerated horizon ξ → −∞!
Could this act as a “covariant brick wall”?
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Counting modes in twisted Poincaré

Warm up: mode counting for a field in twisted Poincaré

n(E) =
V

(2π)3

∫
E

dµ(p) 2p0 δ(C) θ(p0) ,

Which momentum space measure?

To LIV or not to LIV? (Gubitosi and Magueijo, Class. Quant. Grav. 33, no. 11, 115021 (2016))

dµ(p)LIV = d4p

Breaks Lorentz

dµ(p)C =
d4p

(1− `p0)5

Covariant under deformed boosts

The resulting density of states are

n(E)LIV =
2V

(2π)2

[
E 3

3
− `E 4

2
+
`2E 5

5

]
n(E)C =

V

(2π)2
1

`3

[
`E(3`E − 2)

(1− `E)2
− 2 log(1− `E)

]
.
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Finte density of states fo LIV measure

Boosts saturate at 1/`, maximal energy, what about density of states?

lim
E→1/`

n(E)C =∞

However using the LIV measure

lim
E→1/`

n(E)LIV =
V

(2π)2
1

15`3
,

we have a finite number of states all the way up to the Planck scale
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Deformed Rindler: brick-wall from twist?

Look at twisted generalization of

n(E) =
V⊥

(2π)3

∫
R
dξ

∫
dpηdpξdp

2
⊥ 2pηe

−2aξ δ(C)θ(pη) .

Sparing you the gruesome details the final result is

n(E) =
V⊥

(2π)3

∫
R
dξ

∫
dµ(pη, pξ, p⊥)

pη(1− `pη)2e2aξδ(pη − ωp)

(`pη + (1− `pη)eaξ)(pηeaξ + `p2
ξ(1− eaξ))

θ(pη)

where ωp = on-shell energy obtained from deformed Rindler dispersion relation

CF =
e−2aξ

(1− `PFη )2

[
−(PFη )2 + (PFξ )2 + (PF⊥ )2(PFη `+ (1− `PFη )eaξ)2

]
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Brick-wall from twist? Only if LIV!

Calculate density of states in fully covariant picture

n(E)C =
V⊥

(2π)2
e−2aξmin

a

[
E 3

3
− `E 4

2
+
`2E 5

5

]
,

still need a “brick-wall” regulator ξmin ...

If we LIV we get a finite density of states!

n(E)LIV = − V⊥
(2π)2

1

6a

1

`3
log(1− `E),

a bitter win...
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Bekenstein-Hawking entropy from “twisted brick wall”

Evaluate the entropy associated to n(E)LIV

Consider the logarithm of the deformed partition function

logQ = β

∫ 1/`

0

dE
n(E)

e
βE

1−`E − 1

(deformed B-E distribution natural choice determined by the twist map PFµ =
Pµ

1+`P0
)

Setting β = 1
TU

= 2π
a

we obtain

SLIV =
V⊥

144π`2
− V⊥a

`

ζ(3)

32π4
+

V⊥a
2

2160π
+O(`)

at leading order, with ` = LP
6
√
π

leads to the Bekenstein-Hawking entropy...
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Conclusions & outlook

• Use Weyl-Poincaré (WP) algebra to describe accelerated observers and
horizons

• Look at deformations of WP algebra to probe Planck-scale features of Rindler
space

• For the particular model of twisted WP algebra two interesting results:

I Finite blueshift at the horizon

I Finite density of states (only with LIV measure)

WHAT’S NEXT?

• Rindler space locally describes observers under a uniform gravitational field...

• Planckian aspects of Unruh and (Hawking) quantum radiance.
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• Use Weyl-Poincaré (WP) algebra to describe accelerated observers and
horizons

• Look at deformations of WP algebra to probe Planck-scale features of Rindler
space

• For the particular model of twisted WP algebra two interesting results:

I Finite blueshift at the horizon

I Finite density of states

(only with LIV measure)

WHAT’S NEXT?

• Rindler space locally describes observers under a uniform gravitational field...

• Planckian aspects of Unruh and (Hawking) quantum radiance.

Michele Arzano — Accelerated observers and Planck-scale kinematics 25/25



Conclusions & outlook
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