
M I L A N O + B O L O G N A
S O F T W A R E T U T O R I A L , 1 4 - 1 5 J U N E 2 0 1 8

FOOT
simulations
with FLUKA

(& shoe)

Outline

A glimpse of the input

Bodies & regions

Phisics setting

Others..

Management the geometry with shoe:
the FOOT style

Magnetic field: how to

2

A g l i m p s e
o f t h e i m p u t

3

Physics settings

4

Let’s start with the geometry

5

A common practice:
- Body names → Lowercase
- Region names → Uppercase

Bodies

Regions

Beam monitor (1)
Al case

Mylar
windows

Cells
Along x

Along y

Bodies

Regions

[…]

[…]

Al case
Mylar
windows

Cells

Beam monitor (2)

7

[…]

Field wires
Along x

Along y

Sense wires
Along x

Along y

[…]

[…]

[…]

Bodies

Regions

Field wires

Sense wires

Gas (no cells)

Target & vertex

8

Bodies

Regions

Target

Vertex
sensitive
areas

Vertex
passive
areas

Vertex
passive
areas

Vertex
sensitive
areas

Target

9

Magnets Bodies

Regions

Permanent
magnets +
Al covers

Magnetic
area in air

Permanent magnet

Permanent magnet

Magnet aperture

Al cover

Al cover

Magnetic
area in air

Inner Tracker

10

[…]

[…]

[…]

[…]

Bodies

Regions
Passive elements
(board)

Sensitive
zones

Passive
elements

Passive silicon
frames

MicroStrip Detector

11

Bodies

Regions

Scintillator

12

Bodies

Regions

This box is required since scintillator and calorimeter are
composed of many bosies that should be subtracted from the
body AIR. However, already many bodies are subtracted from AIR.
Too many body subtracted → FLUKA error!

[…]

[…]

Calorimeter

13

Bodies

Regions

Materials

14

Definition of a new compound

Single assigment

Multiple assigment: regions must have been
declared subsequently

Magnetic regions

Call to user routines

15

The meaning of WHAT(1),...,WHAT(6), SDUM is defined by the user. A call to the user-written
routine usrini.f with 6 WHAT numerical values and one character string SDUM as arguments is
issued every time this card is read.

The meaning of WHAT(1),...,WHAT(6), SDUM is defined by the user. A call to the user-written
routine usrout.f with 6 WHAT numerical values and one character string SDUM as arguments is
issued every time this card is read.

This command activates calls to the user routine mgraw.f and to its entries BXDRAW, EEDRAW,
ENDRAW, SODRAW, USDRAW

Calls the routine magfld.f that handles the magnetic field.

Further information in the
slides about user routines.

Mana g em e n t
o f i n p u t & g e om e t r y :
t h e FOOT s t y l e

16

ROOT & FLUKA geometry

17

Further information in the slides of the
Software tutorial by M. Franchini.

https://pandora.infn.it/public/6efedf

MakeGeo (1)

18

Needed by routines!

All the detectors geometry is handled by the
geometry classes in the libraries. A modification in

foot_geo.h is not effective until libraries are
compiled again!

MakeGeo (2)

19

Initialization of
magnetic field

Initialization of
detectors geometry

Makegeo(3)

20

Print the bodies in geo file
(non-detectors bodies are not
handled by classes)

Print the regions in geo file
(non-detectors regions are
not handled by classes)

Makegeo(4)

21

Print material for each region

Print parameters file (in fortran)

Mag n e t i c f i e l d :
h ow t o

22

Magnetic field map

23

Single magnet
magnetic map
(Claudio Sanelli):
• 10*10*30 cm3
• 0,5 cm steps

x y z Bx By Bz

A c++ code is available to produce the
total map for two magnets, according to
their distance and starting from Sanelli’s
map.

Magnetic field in FLUKA

24 Inside one magnet gap

The magfld routine, called by card MGNFIELD interpolates the
point given in the magnetic map.

FLUKA tracking in magnetic field

25

When tracking particles in magnetic field, FLUKA, like many
other MC codes, makes use of a different tracking
algorithm since, the analytic solution for the crossing of a
helix with a generic surface could be rather time
consuming.

Magnetic field tracking is performed by iterations until a
given accuracy when crossing a boundary is achieved.

Meaningful user input is required when setting up the
parameters defining the tracking accuracy.

The true step (black line) is approximated by linear sub-
steps. Sub-step length and boundary crossing iteration
are governed by the required tracking precision.
The red line is the path actually followed,
The magenta segment is the last substep, shortened
because of a boundary crossing
The end point is ALWAYS on the true path, generally NOT
exactly on the boundary, but at a distance < ε’ (light
blue arc) from the true boundary crossing. The ε’ value
has to be specified by the user (we neglected this in the
first releases)

