FOOT simulations with FLUKA (& shoe)

MILANO + BOLOGNA SOFTWARE TUTORIAL, 14-15 JUNE 2018

Öutline

A glimpse of the input
 Bodies & regions
 Phisics setting
 Others..
 Management the geometry with shoe:

- the FOOT style
- A Magnetic field: how to

A glimpse of the imput

Physics settings

DEFAULTS	PRECISIO V		
PHYSICS	Type: EVAPORAT V	Model: New Evap with heavy fra	g 🕶
· ·	Zmax: 0	Amax: 0	5
ONTRANS	Transport: HEAVYION V		
RADDECAY	Decays: Semi-Analogue 🔻	Patch Isom: 🔻	Replicas: 1
h/μ Int: ignore ▼	h/µ LPB: ignore ▼	h/µ WW: ignore ▼	e-e+ Int: ignore ▼
e-e+ LPB: ignore ▼	e-e+ WW: ignore 🔻	Low-n Bias: ignore 🔻	Low-n WW: ignore 🔻
<u> </u>	decay cut: 0.0	prompt cut: 0.0	Coulomb corr: 🗸
**********	******		
GENERAL & PRIMARY	*		

	ENERAL@@@ **********************************		
*PHYSICS	Type: COALESCE V	Activate: On 🔻	
BEAM	Beam: Energy 🔻	E: 0.2	Part: HEAVYION V
∆p: Flat ▼	Δp: 0	∆¢: Flat ▼	$\Delta \phi$: O
Shape(X): Gauss 🔻	x(FWHM): 0.48	Shape(Y): Gauss v	y(FWHM): 0.48
SHI-PROPE	Z: 8	A: 16	Isom:
BEAMPOS	x: 0	у: О	z: -30
-	cosx: 0	cosy: 0	Type: POSITIVE V
SEMFCUT	Type: transport 🔻		
	e-e+ Threshold: Kinetic 🔻	e-e+ Ekin: 1.0	Y: 1
	Reg: BLACK V	to Reg: @LASTREG V	Step: 1
K EMFCUT	Type: PROD-CUT V		
	e-e+ Threshold: Kinetic 🔻	e-e+ Ekin: 1.0	Y: 1
Fudgem: 1	Mat: BLCKHOLE	to Mat: @LASTMAT 🔻	Step: 1
DELTARAY	E thres: 1	# Log dp/dx:	Log width dp/dx:
Print NOPRINT V	Mat: BLCKHOLE	to Mat: @LASTMAT 🔻	Step: 1
PAIRBREM	Act: Inhibit both 🔻	e-e+ Thr:	γ Thr:
-	Mat: BLCKHOLE	to Mat: @LASTMAT 🔻	Step:

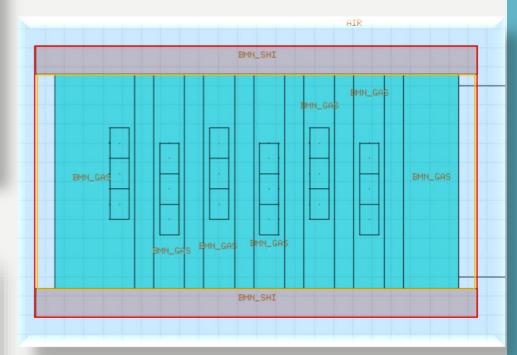
Let's start with the geometry

[�] GEOBEGIN	File: foot.geo • Title: FOOT experiment geometry	Log: 🔻 Geometry: 15 🔹	Bodies	Acc: Out: 🔻	WHAT(2): accuracy parameter
***Black Body					Default: -
RPP	blk	Xmin: -1000 Ymin: -1000 Zmin: -1000		Xmax: 1000 Ymax: 1000 Zmax: 1000	
***Air -> no ma	ag field				
RPP	air	Xmin: -900 Ymin: -900 Zmin: -900		Xmax: 900 Ymax: 900 Zmax: 900	
RCC	er stc	x: 0 Hx: 0 R: 2.600000		у: 0 Ну: 0	z: -29 Hz: 0.025000

A common prac	ctice:
---------------	--------

- Body names \rightarrow Lowercase
- Region names \rightarrow Uppercase

REGION	BLACK	Regions	Neigh: 5
	expr: blk -air		
***Air -> no n	nag field		
REGION	AIR		Neigh: 5
	-(BmnShiOu -BmnShil -(BmnShiln -BmnMyl0 -itrp2 -itrp23 -itrp44 - -itrp50 -itrp71 -itrp10 -itrp12 -itrp33 -itrp54 -itrp45 -itrp66 -itrp51 - -itrp9 -itrp30 -itrp51 - -itrp17 -itrp19 -itrp34 -itrp76 -itrp78 -itrp80 -itrp39 -itrp41 -itrp56		
***Start Coun			Naish F
REGION	STC		Neigh: 5
	expr: stc		


Beam monitor (1)

[...]

Bodies

***Beam Monitor					
	BmnShiOu		Xmin: -7.100000		Xmax: 7.100000
		Alcase	Ymin: -7.100000		Ymax: 7.100000
_		AICUSE	Zmin: -25.500000		Zmax: -2.500000
FRPP	BmnShiln		Xmin: -5.600000		Xmax: 5.600000
		1	Ymin: -5.600000		Ymax: 5.600000
		1	Zmin:-25.500000		Zmax: -2.500000
ДХҮР	BmnMyl0	Mylar	z:-24.502500		
ХҮР	BmnMyl1		z:-24.500000		
ТХХА	BmnMyl2	windows	z:-3.500000		
СХҮР	BmnMyl3		z:-3.497500		
RPP	BmnC00		Xmin: -5.599990		Xmax: 5.599990
			Ymin: -1.995490	Along x	Ymax: -0.404510
		Cells	Zmin: -21.645490		Zmax: -20.654510
RPP	BmnC10	Cella	Xmin: -2.795490		Xmax: -1.204510
			Ymin: -5.599990	Alongy	Ymax: 5.599990
		-	Zmin: -20.345490	55	Zmax: -19.354510

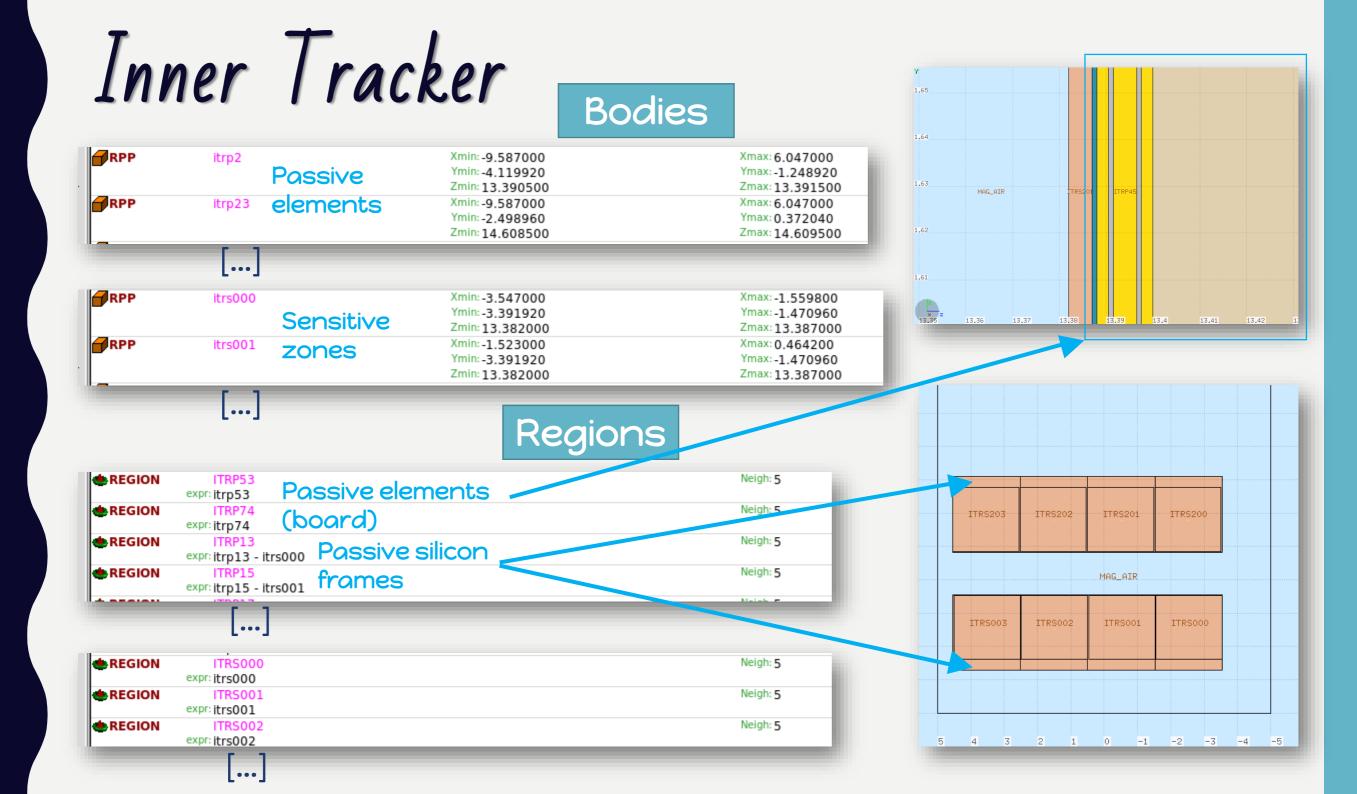
REGION	BMN_SHI expr: BmnShiOu -BmnShiIn	case	Regions	Neigh: 5
REGION	BMN_MYL0 expr: BmnShiln -BmnMyl0 +BmnMyl2	ı Mylar		Neigh: 5
REGION	BMN_MYL1 expr: BmnShiln -BmnMyl2 +BmnMyl2	3 windows		Neigh: 5
REGION	BMN_C000 expr: BmnC00 -BmnS00 Cells			Neigh: 5
REGION	BMN_C001 expr: BmnC01 -BmnS01			Neigh: 5

Beam monitor (2)

						00ies
RCC	BmnF00	Field wires	x:-5.600000 Hx:11.200000 R:0.004500	Along×	У2 Ну:0	2: -21.650000 Hz: 0
RCC	BmnF10		x:-2.800000 Hx:0 R:0.004500	Along y	y:-5.600000 Hy:11.200000	z: -20.350000 Hz: 0
	[]					
RCC	BmnS00	Sense wires	×:-5.600000 Hx:11.200000 R:0.001500	Along×	y:-1.200000 Hy:0	z: -21.150000 Hz: 0
RCC	BmnS10		x:-2 Hx:0 R:0.001500	Along y	y:-5.600000 Hy:11.200000	z: -19.850000 Hz: 0
	г л					
	[]	Field	d wires	BmnShiln + BmnF0 BmnShiln + BmnF0 BmnShiln + BmnF0 BmnShiln + BmnF0	4 BmnShiln + BmnF05 BmnSi 8 BmnShiln + BmnF09 BmnSi 12 BmnShiln + BmnF013 Bm	hiln + BmnF02 BmnShiln + BmnF03 hiln + BmnF06 BmnShiln + BmnF07 hiln + BmnF010 BmnShiln + BmnF011 nShiln + BmnF014 BmnShiln + BmnF015 nShiln + BmnF018 BmnShiln + BmnF010
	Regior		• REGION	BmnC04 + BmnS BmnC08 + BmnS BmnC012 + Bmn BmnC016 + BmnS BmnC12 + BmnS BmnC16 + BmnS BmnC110 + BmnS	04 BmnC05 + BmnS05 BmnC 08 BmnC09 + BmnS09 BmnC S012 BmnC013 + BmnS013 B S016 BmnC017 + BmnS017 B 12 BmnC13 + BmnS13 BmnC 16 BmnC17 + BmnS17 BmnC S110 BmnC111 + BmnS111 B	Neigh: 5 02 + BmnS02 BmnC03 + BmnS03 06 + BmnS06 BmnC07 + BmnS07 010 + BmnS010 BmnC011 + BmnS011 BmnC014 + BmnS014 BmnC015 + BmnS015 BmnC10 + BmnS10 BmnC11 + BmnS11 14 + BmnS14 BmnC15 + BmnS15 18 + BmnS18 BmnC19 + BmnS19 BmnC112 + BmnS112 BmnC113 + BmnS113 BmnC116 + BmnS116 BmnC117 + BmnS117
		Ga	eregion s (no cell	BMN_GAS expr: BmnShiln -BmnMy -BmnF00 -BmnF01 -BmnF06 -BmnF07 -BmnF012 -BmnF0 -BmnC00 -BmnC01		Neigh: 5 ImnF05 ImnF011 P16 -BmnF017 -BmnF020

•	ye	t & i		Χ		VTXP3			
*Target RPP	tgt	Target	Xmin: -0.75 Ymin: -0.75 Zmin: -0.1	Bod	Xmax: 0.75 Ymax: 0.75 Zmax: 0.1				
*Vertex RPP	vtxp0		Xmin: -0.982520 Ymin: -1.028400 Zmin: 0.647500)	Xmax: 1.28 Ymax: 0.99 Zmax: 0.65				
RPP	vtxpl	Vertex	Xmin: -0.982520 Ymin: -1.028400 Zmin: 0.997500)	Xmax: 1.28 Ymax: 0.99 Zmax: 1.00				
RPP	vtxp2	sensitive areas	Xmin: -0.982520 Ymin: -1.028400 Zmin: 1.997500)	Xmax: 1.28 Ymax: 0.99 Zmax: 2.00				VTXS3
RPP	vtxp3]	Xmin: -0.982520 Ymin: -1.028400 Zmin: 2.347500)	Xmax: 1.28 Ymax: 0.99 Zmax: 2.35				
RPP	vtxs0	Vortex	Xmin: -0.960480 Ymin: -0.993600 Zmin: 0.647500)	Xmax: 0.96 Ymax: 0.99 Zmax: 0.652	500			
RPP	vtxs1	Vertex passive	Xmin: -0.960480	TARGET	Xmax: 0.960	480		Neigh: 5	
RPP	vtxs2	areas		expr: tgt	Target	Req	gions	Neight 3	
RPP	vtxs3			VTXP0 expt: vtxp0 - vtxs0	Marchar			Neigh: 5	
_		1		VTXP1 expl: vtxp1 - vtxs1	Vertex			Neigh: 5	
			REGION	vTXP2 expr: vtxp2 - vtxs2	sensitiv	e		Neigh: 5	
			REGION	VTXP3 expr: vtxp3 - vtxs3	areas			Neigh: 5	
			REGION	VTXS0 expr: vtxs0				Neigh: 5	
			REGION	VTXS1	Vertex			Neigh: 5	
			REGION	VTXS2	passi			Neigh: 5	
			REGION	VTXS3 VTXS3 expr: vtxs3	areas			Neigh: 5	

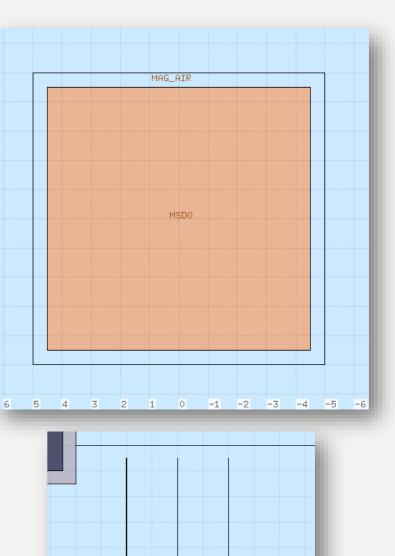
Magnats	30dies	MagCvOu0		x: 0 Hx: 0 R: 14.5	у: 0 Ну: 0	z: 3 Hz: 10
Magnets 🗖	RCC	MagCvOu1	Dermonent	×:0 H×:0 R:14.5	у: 0 Ну: 0	z: 15 Hz: 10
	RCC	MagPMOu0	Permanent magnets +	x: 0 Hx: 0 R: 14	у: 0 Ну: 0	z: 3.5 Hz: 9
	RCC	MagPMOu1	Alcovers	x: 0 Hx: 0 R: 14	у: 0 Ну: 0	z: 15.5 Hz: 9
	RCC	MagPMIn0		X: 0 HX: 0 R: 4	у: 0 Ну: 0	z: 3.5 Hz: 9
MAG_AIR	RCC	MagPMIn1		X:0 HX:0 R:4	у: 0 Ну: 0	z: 15.5 Hz: 9
	***Gap for mag		gnet apertur		у: 0 У: 0	R: 3.5 R: 3.5
	***Magnetic fie	eld air region MagAir		Xmin: -5 Ymin: -5 Zmin: -16	Xmax: 5 Ymax: 5 Zmax: 44	
*Magnets REGION MAG_PM0 expr: MagPMOu0 -MagPMIn0 Permo	nent magnet	Regior	ns			1
REGION MAG_CV0 expr: MagCvOu0 -(MagPMOu0 -MagPMIn0) -	Gap0 Alcover	Neigh: 5				
DECION MAC DUI	anent magnet	Neigh: 5		-		<u> </u> -
REGION MAG_CV1 expr: MagCvOu1 -(MagPMOu1 -MagPMIn1) -	Gap1 Alcover	Neigh: 5			MAG_AI	R
Magnetic field air region MAG_AIR expr: MagAir -tgt -(BmnShiln -BmnMyl0 +Bi -itrp2 -itrp23 -itrp44 -itrp65 -itrp4 -itr -itrp50 -itrp71 -itrp10 -itrp31 -itrp52 - -itrp12 -itrp33 -itrp54 -itrp75 -itrp1 -it -itrp45 -itrp66 -itrp5 -itrp26 -itrp47 -it -itrp9 -itrp30 -itrp51 -itrp72 -itrp11 -it	mnMyI3) -(MagCvOu0 -Gap0) -(MagCvO p25 -itrp46 -itrp67 -itrp8 -itrp29 -itrp73 -itrp0 -itrp21 -itrp42 -itrp63 trp22 -itrp43 -itrp64 -itrp3 -itrp24 trp68 -itrp7 -itrp28 -itrp49 -itrp70	Neigh: 5 Dul -Gapl) -vtxp0 Magnet	ic			


area in air

-itrp17 -itrp19 -itrp34 -itrp36 -itrp38 -itrp40 -itrp55 -itrp57 -itrp59 -itrp61 -itrp76 -itrp78 -itrp80 -itrp82 -itrp14 -itrp16 -itrp18 -itrp20 -itrp35 -itrp37

-itrp39 -itrp41 -itrp56 -itrp58 -itrp60 -itrp62 -itrp77 -itrp79 -itrp81 -itrp83

-itrp6 -itrp27 -itrp48 -itrp69 -msds0 -msds1 -msds2


9

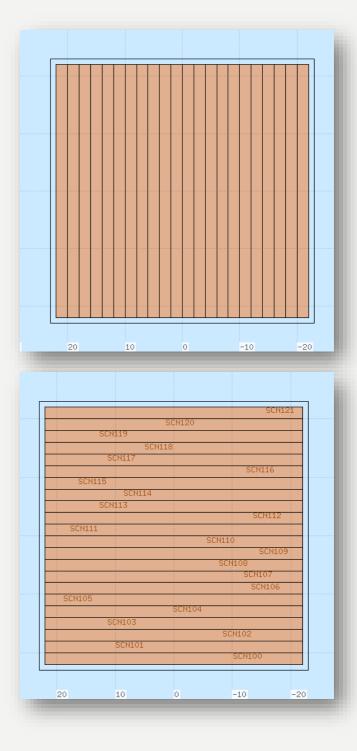
MicroStrip Detector

		Bodies	
***Micro Strip	Detector		
RPP	msds0	Xmin: -4.500000	Xmax: 4.500000
		Ymin: -4.500000	Ymax: 4.500000
		Zmin: 26.992500	Zmax: 27.007500
RPP	msds1	Xmin: -4.500000	Xmax: 4.500000
-		Ymin: -4.500000	Ymax: 4.500000
		Zmin: 28.992500	Zmax: 29.007500
RPP	msds2	Xmin: -4.500000	Xmax: 4.500000
		Ymin: -4.500000	Ymax: 4.500000
		Zmin: 30.992500	Zmax: 31.007500

		Regions
***Micro Strip	Detector	
REGION	MSDS0	Neigh: 5
	expr: msds0	
REGION	MSDS1	Neigh: 5
	expr: msds1	
REGION	MSDS2	Neigh: 5
	expr: msds2	

MAG_AIR

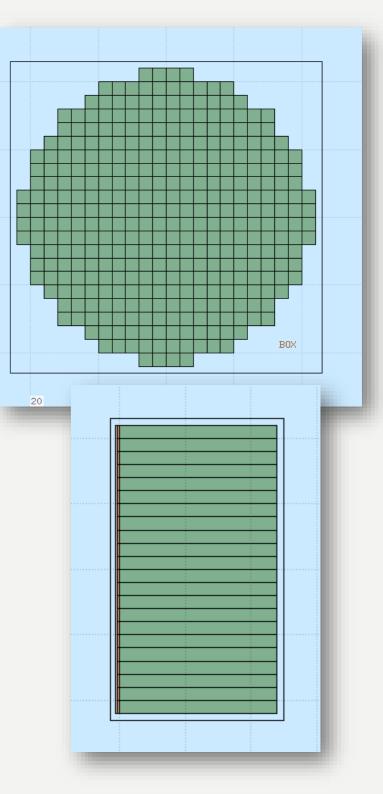
AIR


25 26 27 28 29 30 31 32 33 34

24

Scintillator

RPP	box	Xmin: -23 Ymin: -23 Zmin: 98.55	Xmax: 23 Ymax: 23 Zmax: 125
*Scintillator RPP	scn000	Xmin: -22 Ymin: -22 Zmin: 99,400000	Xmax: -20 Ymax: 22 Zmax: 99, 70000
RPP	scn001	Xmin: -20 Ymin: -22 Zmin: 99.400000	Xmax: -18 Ymax: 22 Zmax: 99.70000
**Air Box for	cintillator and Calorimeter	Regions	
REGION	BOX expr: box -scn000 -scn001 scn010 -scn011 -scn -scn020 -scn021 -scn -scn108 -scn109 -scn -scn118 -scn119 -scn -cal6 -cal7 -cal8 -cal9 -cal12 -cal13 -cal14 -(-cal18 -cal19 -cal20 -(-cal24 -cal25 -cal26 -(-cal30 -cal31 -cal32 -(1 -scn002 -scn003 -scn004 -scn005 -scn006 -scn007 n012 -scn013 -scn014 -scn015 -scn016 -scn017 -scn0 n100 -scn101 -scn102 -scn103 -scn104 -scn105 -scn3 n110 -scn111 -scn112 -scn113 -scn114 -scn115 -scn3 n120 -scn121 -cal0 -cal1 -cal2 -cal3 -cal4 -cal -cal10 -cal11 cal15 -cal16 -cal17 cal21 -cal22 -cal23 cal27 -cal28 -cal29 cal33 -cal34 -cal35	-scn008 -scn009 018 -scn019 106 -scn107 116 -scn117
	BOX expr: box -scn000 -scn001 scn010 -scn011 -scn -scn020 -scn021 -scn -scn108 -scn109 -scn -scn118 -scn119 -scn -cal6 -cal7 -cal8 -cal9 -cal12 -cal13 -cal14 -(-cal18 -cal19 -cal20 -(-cal24 -cal25 -cal26 -(-cal30 -cal31 -cal32 -(1 -scn002 -scn003 -scn004 -scn005 -scn006 -scn007 n012 -scn013 -scn014 -scn015 -scn016 -scn017 -scn0 n100 -scn101 -scn102 -scn103 -scn104 -scn105 -scn3 n110 -scn111 -scn112 -scn113 -scn114 -scn115 -scn3 n120 -scn121 -cal0 -cal1 -cal2 -cal3 -cal4 -cal -cal10 -cal11 cal15 -cal16 -cal17 cal21 -cal22 -cal23 cal27 -cal28 -cal29 cal33 -cal34 -cal35	-scn008 -scn009 018 -scn019 106 -scn107 116 -scn117

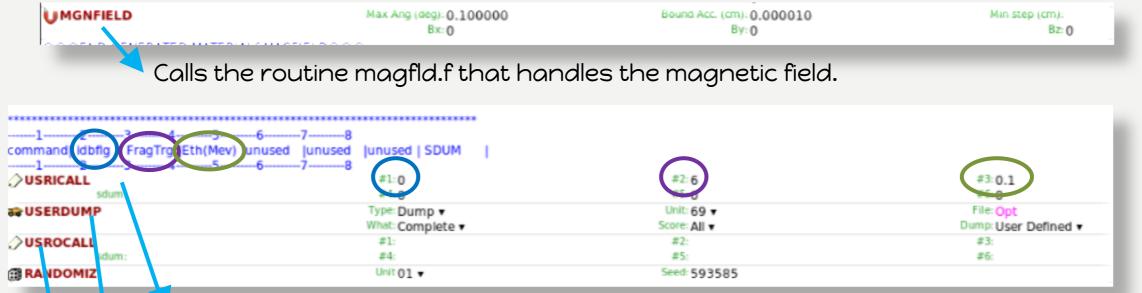

This box is required since scintillator and calorimeter are composed of many bosies that should be subtracted from the body AIR. However, already many bodies are subtracted from AIR. Too many body subtracted \rightarrow FLUKA error!

Calorimeter

		Boo	Ies
*Calorimeter			
RPP	cal0	Xmin: -4	Xmax: -2
		Ymin: -22	Ymax: -20
		Zmin: 100	Zmax: 124
RPP	cal1	Xmin: -2	Xmax: 0
-		Ymin: -22	Ymax: -20
		Zmin: 100	Zmax: 124
RPP	cal2	Xmin: 0	Xmax: 2
-		Ymin: -22	Ymax: -20
		Zmin: 100	Zmax: 124

***Calorimete REGION	r CAL000 expr: cal0	Regions	Neigh: 5
	CAL001 expr: cal1		Neigh: 5
REGION	CAL002 expr: cal2		Neigh: 5

Definition of a new compound


MATERIAL		Name: SAMARIUM	#	p: 7.46
	Z:62	Am:	A:	dE/dx: 🚽
MATERIAL		Name: COBALT	#	P: 8.9
-	Z:27	Am:	A:	dE/dx: 👻
MATERIAL		Name: SmCo	#	P: 8.3
	Z:	Am:	A:	dE/dx: 🔻
COMPOUND		Name: SmCo 🔻	Mix: Atom 🔻	Elements: 13 •
	fl: 2.0	M1: SAMARIUM V	f2:17.0	M2: COBALT V
	f3:	M3: 🔻		

Multiple assignment: regions must have been declared subsequently

ASSIGNMA	Mat: Mylar 🔻	Reg: BMN_MYL1 V	to Reg: 🗸	
ASSIGNMA	Mat(Decay):	Step:	Field:	
	Mat: Ar-CO2 V	Reg: BMN_C000 v	Reg: BMN_C017 V	
	Mat(Decay): 🔻	Step: 1	Field:	
ASSIGNMA	Mat: Ar-CO2 V	Reg: BMN_C100 v	to Reg: BMN C117 V	
	Mat(Decay): 🔻	Step: 1	Field Single as	siament
ASSIGNMA	Mat: Ar-CO2 🔻	Reg: BMN_GAS V	to Reg:	
	Mat(Decay): 🔻	Step:	Field	
ASSIGNMA	Mat: ALUMINUM 🔻	Reg: BMN_FWI 🔻	to Reg: y	
-	Mat(Decay): 🔻	Step:	Field: 🔻	
ASSIGNMA	Mat: TUNGSTEN 🔻	Reg: BMN_SWI V	to Reg: 🔻	
-	Mat(Decay): 🔻	Step:	Field: 🖷	
ASSIGNMA	Mat: Polyethy 🔻	Reg: TARGET V	to Reg: 🖷	
-	Mat(Decay): 🔻	Step:	Field: Magnetic 🔻	
ASSIGNMA	Mat: SILICON V	Reg: VTXP0 v	to Reg: VTXS3 V	
-	Mat(Decay): 🔻	Step: 1	Field: Magnetic 🔻	
ASSIGNMA	Mat: ALUMINUM 🔻	Reg: ITRP2 V	to R TRP73 V	
-	Mat(Decay): 🔻	Step: 1	^{Falo} Magnetic ▼	
ASSIGNMA	Mat: Epoxy 🔻	Reg: ITRP0 V	to Reg: ITRP75 V	
-	Mat(Decay): 🔻	Step: 1	Field: Magnetic 🔻	

Magnetic regions

Call to user routines

The meaning of WHAT(1),...,WHAT(6), SDUM is defined by the user. A call to the user-written routine usrini.f with 6 WHAT numerical values and one character string SDUM as arguments is issued every time this card is read.

The meaning of WHAT(1),...,WHAT(6), SDUM is defined by the user. A call to the user-written routine usrout.f with 6 WHAT numerical values and one character string SDUM as arguments is is is sued every time this card is read.

This command activates calls to the user routine mgraw.f and to its entries BXDRAW, EEDRAW, ENDRAW, SODRAW, USDRAW

Further information in the slides about user routines.

Management of input & geometry: the FOOT style

ROOT & FLUKA geometry

Geometry needed by both:

- detector MC simulation (FLUKA);
- track reconstruction (hit position, Multiple Scattering, alignment, ...)

On the Reco side:

- include positions, materials, mag. field;
- basically managed by Genfit;
- use ROOT classes of TGeometry;

On the FLUKA side:

all defined with parameter files, logic completely different from ROOT;

Further information in the <u>slides</u> of the Software tutorial by **M. Franchini.**

- FOOT' approach: one code take the same input and produce 2 output (automatic, no error, fast changes after the fist super-time-consuming implementation);
 - ▶ **Input:** foot_geo.h (will become a text file...) + foot.inp;
 - Code: single main/macro (MakeGeo.cxx) calls each detector geometry class;
 - Output: FLUKA par files (foot.geo, foot.inp) + TGeometry objects

ROOT geometry NEEDED ONLY in reconstruction;

- FLUKA par files production NOT NEEDED during reconstruction runs (RecoTools)
- FLUKA par files can be produced using a separate run (<u>MakeGeo.cc</u> macro)

Geometry production controlled by **GlobalParameter**: can run together or separately

MakeGeo (1)

shoe/Simulation/MakeGeo.cxx: simple macro, just a main function;

- Define Mag. Field
- Define Materials
- Build detectors pieces (obj matrix), assign material to each piece, check if the magnetic field is present;
- ▶ Write the FLUKA parameter files; Needed by routines!

◎ Compile & run:

- cd shoe/Simulation/
- source CompileGeo.sh (remember to compile libs/src first)
- ▶ ./makeGeo

All the detectors geometry is handled by the geometry classes in the libraries. A modification in foot_geo.h is not effective until libraries are compiled again!

MakeGeo (2)

genfit::FieldManager::getInstance()->init(new FootField("SummedSingleMap_NoRot.table")); // variable field
// genfit::FieldManager::getInstance()->init(new FootField("DoubleDipole.table")); // variable field
// genfit::FieldManager::getInstance()->init(new FootField("DoubleGaussMag.table")); // variable field

Materials* listMaterials = new Materials() ;
listMaterials->PrintCompMap();

// GlobalFootGeo footGeo; TAIRparGeo* stcGeo = new TAIRparGeo(); TABMparGeo* bmGeo = new TABMparGeo(); TAVTparGeo* vtxGeo = new TAVTparGeo(); TAITparGeo* itrGeo = new TAITparGeo(); TAMSDparGeo* msdGeo = new TAMSDparGeo(); TATWparGeo* twGeo = new TATWparGeo(); TACAparGeo* caGeo = new TACAparGeo();

// si costruisce le coordinate di ogni oggetto geometrico e sensibile
stcGeo->InitGeo();
bmGeo->InitGeo();
vtxGeo->InitGeo();
itrGeo->InitGeo();
msdGeo->InitGeo();
twGeo->InitGeo();
caGeo->InitGeo();

Initialization of magnetic field

Initialization of detectors geometry

Makegeo(3)

geofile << vtxGeo->PrintBodies(); geofile << itrGeo->PrintBodies();

Print the bodies in geo file (non-detectors bodies are not handled by classes)

geofile << vtxGeo->PrintRegions();
geofile << itrGeo->PrintRegions();

geofile <<"* ***Magnets\n";</pre>

geofile <<"MAG_PM0
geofile <<"MAG_CV0
geofile <<"MAG_PM1</pre>

5 MagPMOu0 -MagPMIn0\n"; 5 MagCvOu0 -(MagPMOu0 -MagPMIn0) -Gap0\n"; 5 MagPMOu1 -MagPMIn1\n";

geofile <<"MAG_CV1

5 MagPMOu1 -MagPMIn1\n"; 5 MagCvOu1 -(MagPMOu1 -MagPMIn1) -Gap1\n"; Print the regions in geo file (non-detectors regions are not handled by classes)

Makegeo(4)

outfile << "ASSIGNMA BLCKHOLE BLACK\n": outfile << "ASSIGNMA AIR\n"; outfile << stcGeo->PrintAssignMaterial(); outfile << bmGeo->PrintAssignMaterial(); 1\n"; outfile << "ASSIGNMA Polyethy TARGET outfile << vtxGeo->PrintAssignMaterial(); outfile << itrGeo->PrintAssignMaterial(); outfile << "ASSIGNMA SmCo MAG_PM0\n"; outfile << "ASSIGNMA ALUMINUM MAG_CV0\n"; outfile << "ASSIGNMA SmCo MAG_PM1\n"; outfile << "ASSIGNMA ALUMINUM MAG_CV1\n"; 1\n"; outfile << "ASSIGNMA AIR MAG AIR outfile << msdGeo->PrintAssignMaterial(); outfile << "ASSIGNMA BOX\n": outfile << twGeo->PrintAssignMaterial(); outfile << caGeo->PrintAssignMaterial(); outfile << PrintCard("MGNFIELD", TString::Format("%f", MaxAng),</pre> TString::Format("%f",BoundAcc),"",

TString::Format("%f",BoundAcc),"", TString::Format("%f",Bx),TString::Format("%f",By), TString::Format("%f",Bz),"") << endl; // outfile << "MGNFIELD 0.100000 0.000010 0.000000 0.000000 << end

ofstream paramfile; paramfile.open("ROUTINES/parameters.inc");

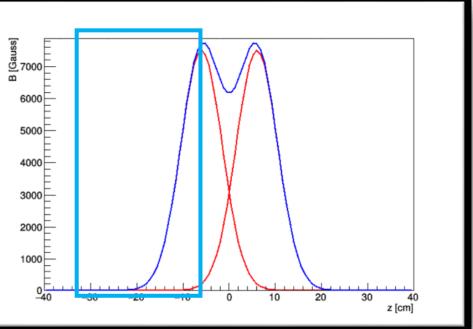
paramfile << bmGeo->PrintParameters(); paramfile << vtxGeo->PrintParameters(); paramfile << itrGeo->PrintParameters(); paramfile << msdGeo->PrintParameters(); paramfile << twGeo->PrintParameters(); paramfile << caGeo->PrintParameters();

paramfile.close();

Print material for each region

Print parameters file (in fortran)

Magnetic field: how to

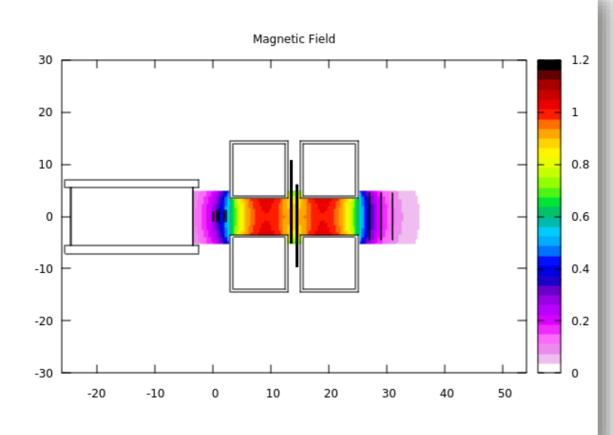

Magnetic field map

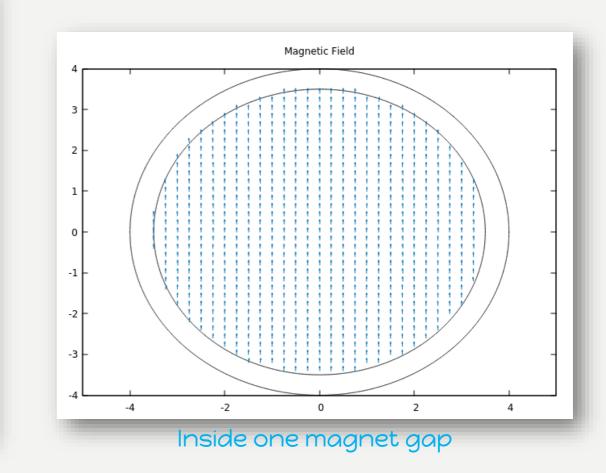
×	y	Z	B×	Ву	BZ
<mark>6</mark> 3945 21	21 145				
-5.000000	-5.000000	-22.000000	-5.549254	30.965339	-0.000000
-5.000000	-5.000000	-21.500000	-5.578702	30.984809	-2.117146
-5.000000	-5.000000	-21.000000	-5.776178	31.111578	-4.157248
-5.000000	-5.000000	-20.500000	-5.773638	31.515483	-6.194417
-5.000000	-5.000000	-20.000000	-6.016018	32.003768	-8.154052
-5.000000	-5.000000	-19.500000	-6.289680	32.632538	-10.281330
-5.000000	-5.000000	-19.000000	-6.726908	33.621049	-12.945227
-5.000000	-5.000000	-18.500000	-7.193384	34.561779	-15.649857
-5.000000	-5.000000	-18.000000	-7.750477	35.755211	-18.188532
-5.000000	-5.000000	-17.500000	-8.325049	37.080605	-20.716670
-5.000000	-5.000000	-17.000000	-9.225554	38.656683	-23.954178
-5.000000	-5.000000	-16.500000	-10.288543	40.310373	-27.477590
-5.000000	-5.000000	-16.000000	-11.206972	42.005556	-31.166651
-5.000000	-5.000000	-15.500000	-12.314589	44.095620	-34.787421
-5.000000	-5.000000	-15.000000	-13.590477	46.426573	-38.8
-5.000000	-5.000000	-14.500000	-15.133879	49.010705	-44.1
-5.000000	-5.000000	-14.000000	-16.757145	51.969408	-49.6 22
-5.000000	-5.000000	-13.500000	-18.661688	55.221109	-49.0 [s]
-5.000000	-5.000000	-13.000000	-21.085349	59.128759	-62.9
-5.000000	-5.000000	-12.500000	-23.821297	63.054492	-70.6
-5.000000	-5.000000	-12.000000	-26.885180	67.403054	-79.0
-5.000000	-5.000000	-11.500000	-30.464817	72.220677	-88.5
-5.000000	-5.000000	-11.000000	-34.553693	77.599648	-99.5

A c++ code is available to produce the total map for two magnets, according to their distance and starting from Sanelli's map. Single magnet magnetic map (Claudio Sanelli):

b -

- 10*10*30 cm3
- 0,5 cm steps

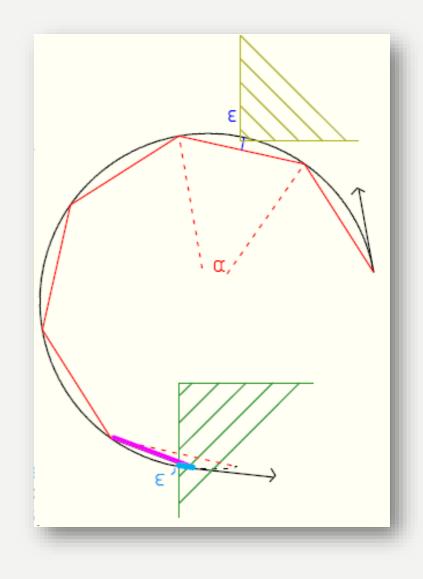



Magnetic field in FLUKA

MGNFIELD

Max Ang (deg): 0.100000 Bx: 0 Bound Acc. (cm): 0.000010 By: 0 Min step (cm): Bz: 0

The magfld routine, called by card MGNFIELD interpolates the point given in the magnetic map.


FLUKA tracking in magnetic field

When tracking particles in magnetic field, FLUKA, like many other MC codes, makes use of a different tracking algorithm since, the analytic solution for the crossing of a helix with a generic surface could be rather time consuming.

Magnetic field tracking is performed by **iterations** until a given accuracy when crossing a boundary is achieved.

Meaningful user input is required when setting up the parameters defining the tracking accuracy.

- The true step (black line) is approximated by linear substeps. Sub-step length and boundary crossing iteration are governed by the required tracking precision.
- * The **red line** is the path actually followed,
- The magenta segment is the last substep, shortened because of a boundary crossing
- * The end point is ALWAYS on the true path, generally NOT exactly on the boundary, but at a distance < ϵ ' (light blue arc) from the true boundary crossing. The ϵ ' value has to be specified by the user (we neglected this in the first releases)

