
A customized FLUKA event by event output
for low energy physics experiments.

The case of FOOT

G. Battistoni, S.M. Valle
V. Patera

Introduction: a common need in many experiments

Typically there are experimental situations where MC is asked to
produce data to be processed as real experimental data:
• event by event
• different particles in the same event,
• often in different detectors in the same apparatus
• each detector providing different kind of information: position,

time, charge (energy release), ...
• Furthermore, people requires from MC the history of all detected

particles in any event in order to verify the reliability of analysis
and reconstruction algorithms

Goals of the work:
- provide a data structure satisfying these requirement and that can
be used also by those who are not familiar with FLUKA
- provide data in a format/environment familiar for most people in a
collaboration

Analysis Environment

Based on ROOT
• Data Files are organized in a Root Tree event by

event.
• For each event all relevant infos for each

detectors are made available together with all
kinematics and history of particle (primary +
secondaries) participating to the event

Building our taylored MC Output in a Root Tree

We have configured some user routines of FLUKA to produce an
“ad hoc” event-by-event output written as an ASCII file (*TXT.dat)

A simple and portable code reads these txt’s and outputs ROOT
files

Tree
Branches

Output from
MC: Txt file

ROOT file
with Tree
structure

1st Step 2nd Step

FLUKA user routines used in FOOT - 1

usrini.f : Begin of run. It receives from data cards some user flags and possible
thresholds to trigger data output. Recognizes and stores geometry names. Writes
run header on TXT file

usrein.f : Begin of event. Zeroing of output arrays (defined in a user include file)

mgdraw.f (+ custom service routines) : managing the logic of the tree structure of
event history. Entries used: mgdraw, sodraw, endraw, bxdraw, usdraw

mgdraw_lib.f : Not a standard FLUKA user routine. It contains the custom service
routines that fill hits for every specific detector and for crossing borders as well

mgdraw.inc : custom include file with array definitions and additional user variables;
some parameters concerning geometry size, coord. etc.

FLUKA user routines used in FOOT - 2

usreou.f : End of event. implements trigger logic for data output. Writes output
arrays on TXT file at the end of each event

UpdateCurrentParticle.f: Not a standard FLUKA user routine. It manages the logic to
recognize new created particles, beginning and end of history of each particle

magfld.f : reads the map of magnetic field and interpolates it at run time when
tracking in a region with magnetic field on is requested

usrout.f : End of run. It does nothing important

parameters.inc: a custom include file with detector parameters that is automatically
generated when producing the geometry with makeGeo

what there is inside parameters.inc

c BEAM MONITOR PARAMETERS

integer ncellBMN
parameter (ncellBMN = 3)
integer nlayBMN
parameter (nlayBMN = 6)

c VERTEX PARAMETERS

integer nlayVTX
parameter (nlayVTX = 4)
integer xpixVTX
parameter (xpixVTX = 928)
integer ypixVTX
parameter (ypixVTX = 960)
double precision dxVTX
parameter (dxVTX = 0.00207D+00)
double precision dyVTX
parameter (dyVTX = 0.00207D+00)
….

The compiling/linking script
Routines are stored in shoe/Simulation/ROUTINES

Compile+link scritpt is in shoe/Simulation: link_FOOT_mag.sh

#!/bin/sh
cd ROUTINES
$FLUPRO/flutil/fff usrini.f
$FLUPRO/flutil/fff usrein.f
$FLUPRO/flutil/fff usreou.f
$FLUPRO/flutil/fff usrout.f
$FLUPRO/flutil/fff mgdraw.f
$FLUPRO/flutil/fff magfld.f
$FLUPRO/flutil/fff mgdraw_lib.f
$FLUPRO/flutil/fff UpdateCurrentParticle.f

$FLUPRO/flutil/ldpm3qmd -m fluka usrini.o usrout.o usreou.o usrein.o mgdraw.o m
agfld.o mgdraw_lib.o UpdateCurrentParticle.o -o fluka_FOOT_mag.exe

rm -rf *.o
mv fluka_FOOT_mag.exe ../
cd ../

Usage: source link_FOOT_mag.sh

Compilation of routines

Linking of routines to create executable
shoe/Simulation/fluka_FOOT_mag.exe

A glimpse of FOOT user routines - 1

mgdraw.inc

….

integer nump, maxnump

parameter(maxnump=2000)

integer idpa(maxnump), igen(maxnump)

integer icha(maxnump), numreg(maxnump), iba(maxnump)

integer idead(maxnump), jpa(maxnump)

real vxi(maxnump),vyi(maxnump),vzi(maxnump)

real vxf(maxnump),vyf(maxnump),vzf(maxnump)

real px(maxnump),py(maxnump),pz(maxnump)

real pxf(maxnump),pyf(maxnump),pzf(maxnump)

real amass(maxnump), tempo(maxnump), tof(maxnump)

real trlen(maxnump)

common /particle_common/ vxi, vyi, vzi,

& vxf, vyf, vzf,px, py, pz, pxf, pyf, pzf,

& amass, tempo, tof, trlen, nump, idpa, igen,

& icha, numreg, iba, idead, jpa

…..

As an example this is for instance the definition

of all variables and arrays which constitute the

«Particle Block»

A glimpse of FOOT user routines - 2

usrein.f
do ii = 1,min(nump,maxnump)

idpa(ii) = 0
igen(ii) = 0
icha(ii) = 0
numreg(ii) = 0
iba(ii) = 0
idead(ii) = 0
jpa(ii) = 0
vxi(ii) = 0.
vyi(ii) = 0.
vzi(ii) = 0.
vxf(ii) = 0.
vyf(ii) = 0.
vzf(ii) = 0.
px(ii) = 0.
py(ii) = 0.
pz(ii) = 0.
pxf(ii) = 0.
pyf(ii) = 0.
pzf(ii) = 0.
amass(ii) = 0.
tempo(ii) = 0.
tof(ii) = 0.
trlen(ii) = 0.

c
idfluka(ii) = 0 ! aux variables for particle latching

c
end do
nump = 0

As an example here you find the zeroing of all
variables and arrays which constitute the
«Particle Block» performed at the beginning of
each event

A glimpse of FOOT user routines - 3

mgdraw.f
…
if(mreg.eq.nregSTC)then

erawSTC = 0.
IF (MTRACK .GT. 0)THEN

do ii = 1,MTRACK
erawSTC = erawSTC + dtrack(ii)

end do
IF (LQEMGD)THEN

RULLL = ZERZER
CALL QUENMG (ICODE, MREG, RULLL, DTQUEN)

c
c DTQUEN(MTRACK,1) e' il rilascio di energia quenchato nello start counter
c

do ii = 1,mtrack
equenchedSTC = equenchedSTC + dtquen(ii,3)

end do
equenchedSTC = equenchedSTC*abs_STC

endif
endif
if(erawSTC.gt.0) then

call score_STC(mreg,erawSTC,equenchedSTC,
& xtrack(0),ytrack(0),ztrack(0),xtrack(ntrack),ytrack(ntrack),
& ztrack(ntrack))

endif
endif

…

As an example here you find the point where,
during a step in the transport of a particle, the
energy deposition for the Start Counter is
defined.

The score_STC routine, which actually
fills the hit arrays for the Start
Counter is in the file mgdraw_lib.f

A glimpse of FOOT user routines - 4

usreou.f
if(trigger) then
c

write(outunit,*) ncase,nump,nSTC,nBMN,nVTX,nITR,nMSD,nSCN,nCAL,
& nCROSS

c
c scrivo la banca delle particelle
c

do ii = 1,nump
write(outunit,*)idpa(ii), igen(ii), icha(ii),

& numreg(ii), iba(ii), idead(ii), jpa(ii), vxi(ii),
& vyi(ii), vzi(ii), vxf(ii), vyf(ii), vzf(ii), px(ii),
& py(ii),pz(ii),pxf(ii),pyf(ii),pzf(ii),amass(ii),
& tempo(ii),tof(ii),trlen(ii)

end do
c
c scrivo lo start counter
c

do ii = 1,nSTC
write(outunit,*) idSTC(ii),

& xinSTC(ii), yinSTC(ii), zinSTC(ii),
& xoutSTC(ii), youtSTC(ii), zoutSTC(ii),
& pxinSTC(ii), pyinSTC(ii), pzinSTC(ii),
& pxoutSTC(ii), pyoutSTC(ii), pzoutSTC(ii),
& deSTC(ii), alSTC(ii), timSTC(ii)

end do
….

As an example here you find the point where,
if the «trigger condition» is matched, the
particle banck and hit arrays (here you see
only Start Counter) are written onto the TXT
file

