
How to manage a run of FOOT simulation

G. Battistoni, S.M. Valle

How many events? How many FLUKA runs?
Typically, for the evaluation of detector performances we
have been working so far with productions of the order of
107 primaries

Unpractical to make a single long run

Much better to produce k runs in parallel, considering more
than 1 cycle per run. The size of k depends on the amount of
available CPU cores

The number of primaries/cycle is something that depends on
user’s flavor and CPU speed. It is advisable to have cycles
with duration not longer than a few hours.

How many events? How many FLUKA runs?

A common approach:
Copy the prototype of input file to k replicas (k will be the number of
runs), paying attention to make different initializations of random
number.

For instance: copy foot.inp to 16O_C2H4_200_1.inp,
16O_C2H4_200_2.inp, …, 16O_C2H4_200_20.inp

In each input file the RANDOMIZE data card has to be modified in such
a way to put in WHAT(2) a different number (no rules or
recommendation about this number, user’s choice)

Personally I manage this by means of a simple code (crea_input.cc)
See on pcalien: /disk4/Tutorial/Simulation/CreaInput/

How many events? How many FLUKA runs?

Usage:
cp foot.inp 16O_C2H4_200.inp

./CreaInput/crea_input -n 20 -in 16O_C2H4_200 -out 16O_C2H4_200

This will create automatically 20 input files with different RANDOMIZE:
16O_C2H4_200_1R.inp
16O_C2H4_200_2R.inp
…
16O_C2H4_200_20R.inp

To be checked carefully in the input prototype!

1) Primary type (BEAM and HI-PROPE cards)
2) Primary energy (BEAM card)
3) Target material (for ex.: ASSIGNMA Polyethy TARGET)
4) Trigger flag to write events in the USRICALL card (2nd field: 6 means

only events with ≥1 inelastic interaction in the target; 0 would
mean an untriggered output)*

5) Number of primaries (START card)

• Other output triggers exist but do not consider them (to be checked), other triggers can

be studied, for instance an elastic event trigger has been implemented, but not yet

committed.

Untriggered output means that ~98.5% of events are primaries not interacting in the

target. They might interact in VTX, ITR, MSD or SCN and eventually die in CAL, producing

there many particles ➞ Very large TXT file!

To be checked carefully in the input prototype!

1) There is an event debug flag in the USRICALL card: 1st field.

Normally it should be 0. If >0 a verbose event debug output with

many messages about the history of particle tracking is written on

the *.log file

2) Heavy *log file. It is meaningful to do that only for single events.

Otherwise it could be even too difficult to read the file

3) If the debug flag is <0, a file is created to allow the event display of

tracks with Flair (advanced topic)

Launching the jobs

$FLUPRO/flutil/rfluka –e fluka_FOOT_mag.exe –N0 –M5 16O_C2H4_200_1R &

This will launch a run with 5 cycles for the input file 16O_C2H4_200_1R.inp

Depending on the number of available core it is possible to send several runs (each
one for a different input file!!) in parallel

For each case a temporary fluka_xxxx directory will be created.

Progress of job can be checked looking at the *.out or *.err file in the temporary directory.
Tip: look for E+30 (grep «E+30» *.err)
Example: 380000 620000 620000 1.0134497E-02 1.0000000E+30

No. of events processed No. of events still to be processed

Average cpu time/event at that time

Tip:
- to stop a cycle in an ordered way: in fluka_xxxx create fluka.stop (touch fluka.stop)
- To stop a run: touch rfluka.stop

At the end of the job

If everything’s OK you can proceed to build the root output file
For each cycle a *TXT.dat file wil be available in shoe/Simulation
Example: ls -1 *TXT.dat
16O_C2H4_200_10R001_TXT.dat
16O_C2H4_200_1R001_TXT.dat
16O_C2H4_200_2R001_TXT.dat
16O_C2H4_200_3R001_TXT.dat
16O_C2H4_200_4R001_TXT.dat
16O_C2H4_200_5R001_TXT.dat
16O_C2H4_200_6R001_TXT.dat
16O_C2H4_200_7R001_TXT.dat
16O_C2H4_200_8R001_TXT.dat
16O_C2H4_200_9R001_TXT.dat

ls -1 *TXT.dat > 16O_200.lis
will create a 16O_200.lis file containing the list of files to be processed to create the
root output file

As a first thing, before doing any other thing, check in the *.log files possible messages of
error!!!!

Inside the TXT file

6 1.0000000000000000E-004
96 136 1 12 47 11 0 0 0 626

…

Run header. This first line is unique for each TXT file.
It echoes the trigger conditions (written by usrini.f)

This second line (event header) is written instead at the beginning of each event written
onto output. For instance this example says that:
- Event number of FLUKA is 96
- There are 136 particles in the particle data bank
- There is 1 hit in STC
- There are 12 hits in BM
- There are 47 hits in VTX
- There are 11 hits in ITR
- There are no hits in MSD, SCN and CALO
- There are 626 crossings

After that all banks will follow (all these lines are written by usreou.f)

… write(outunit,*) ncase,nump,nSTC,nBMN,nVTX,nITR,nMSD,nSCN,nCAL,
& nCROSS

write(outunit,*) int(abs(fragtrig)), Ethrdep

Processing the TXT files

The TXT files will be converted to a root tree by means of a code
(Txt2Root):

1) The Txt2root code has to be compiled (the first time)
cd Simulation/TXT2ROOT
make

2) in shoe/Simulation
./TXT2ROOT/Txt2Root –in nome.lis -iL -out nome.root

This switch is used to say that nome.lis is a list of files

You may process a single TXT file:
./TXT2ROOT/Txt2Root –in TXT.dat –out nome.root
(notice that here you will not give -iL

Inside Txt2Root.cpp

// loop sui file della lista (if any)

for(int idfile=0; idfile<numfiles;idfile++){
cout<<endl<<"Now processing data from "<<infiles.at(idfile)<<"

file!"<<endl;
ReadError = false;

pfile = fopen(infiles.at(idfile),"r");

nread= fscanf(pfile,"%d %lf\n",&fragtrig,&Ethreshold);
….

Reads the run header

// loop sugli eventi del file

while((!feof(pfile))&&(!ReadError)){
…
nread= fscanf(pfile,"%d %d %d %d %d %d %d %d %d %d \n",&eve.EventNumber,

&eve.TRn,&eve.STCn,&eve.BMNn,&eve.VTXn,&eve.ITRn,&eve.MSDn,
&eve.SCNn,&eve.CALn,&eve.CROSSn);

…

Reads the event header

Inside Txt2Root.cpp
nread = fscanf(pfile,

"%d %d %d %d %d %d %d %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf
%lf %lf \n ",

&eve.TRpaid[jj],&eve.TRgen[jj],&eve.TRcha[jj],
&eve.TRreg[jj],&eve.TRbar[jj],&eve.TRdead[jj],
&eve.TRfid[jj],&eve.TRix[jj],
&eve.TRiy[jj],&eve.TRiz[jj],&eve.TRfx[jj],&eve.TRfy[jj],
&eve.TRfz[jj],&eve.TRipx[jj],&eve.TRipy[jj],&eve.TRipz[jj],
&eve.TRfpx[jj],&eve.TRfpy[jj],&eve.TRfpz[jj],&eve.TRmass[jj],
&eve.TRtime[jj],&eve.TRtof[jj],&eve.TRtrlen[jj]);

This for example is the readout of the particle bank

All eve.* will be the leafs of the root tree

