Simone Valdré INFN – Sezione di Firenze

FURBO

Fazia Upgrade for Radioactive Beam Operation

Sesto Fiorentino, 6 Giugno 2018

Il telescopio FAZIA

FA7IA

Stadi del telescopio

- Rivelatore al silicio reverse-mounted da 300 µm
- 2 Rivelatore al silicio reverse-mounted da 500 µm
- S Cristallo di Csl(Tl) da 10 cm letto da un fotodiodo

Per raggiungere elevate risoluzioni energetiche e discriminazioni in Z ed A, i rivelatori al silicio provengono da un lingotto nTD tagliato con una particolare inclinazione per evitare effetti di channeling.

Il telescopio FAZIA

FA7IA

Stadi del telescopio

- Rivelatore al silicio reverse-mounted da 300 µm
- Rivelatore al silicio reverse-mounted da 500 μm
- S Cristallo di Csl(Tl) da 10 cm letto da un fotodiodo

Per raggiungere elevate risoluzioni energetiche e discriminazioni in Z ed A, i rivelatori al silicio provengono da un lingotto nTD tagliato con una particolare inclinazione per evitare effetti di channeling.

Il telescopio FAZIA

FA7IA

Stadi del telescopio

- Rivelatore al silicio reverse-mounted da 300 µm
- Rivelatore al silicio reverse-mounted da 500 μm
- S Cristallo di Csl(Tl) da 10 cm letto da un fotodiodo

Per raggiungere elevate risoluzioni energetiche e discriminazioni in Z ed A, i rivelatori al silicio provengono da un lingotto nTD tagliato con una particolare inclinazione per evitare effetti di channeling.

2 telescopi sono collegati a ciascuna front-end card (FEE).

FURBO

II blocco FAZIA

8 front-end sono connesse ad una block card tramite il back plane

FURBO

II blocco FAZIA

Il blocco è montato su una **piastra di rame** nella quale fluisce acqua per raffreddarlo in vuoto 0000

II blocco FAZIA

fino a 36 block card possono essere gestite da una regional board attraverso un collegamento ottico full duplex a 3 Gb/s

Со	nc	lu	sic	oni
0				

Front-end

FAZIA

• Catena analogica: pre-amplificatori di carica ed anti-aliasing

Front-end

FAZIA

- Catena analogica: pre-amplificatori di carica ed anti-aliasing
- Segnale immediatamente digitalizzato
 - $\bullet\,$ ADC a 14 bit: risoluzione $<1\,\%$ da 5 MeV a 4 GeV
 - clock comune per garantire sincronismo tra i canali

Front-end

FA7IA

- Catena analogica: pre-amplificatori di carica ed anti-aliasing
- Segnale immediatamente digitalizzato
 - $\bullet\,$ ADC a 14 bit: risoluzione $<1\,\%$ da 5 MeV a 4 GeV
 - clock comune per garantire sincronismo tra i canali
- FPGA per processamento on-line dei segnali

Front-end

FA7IA

- Catena analogica: pre-amplificatori di carica ed anti-aliasing
- Segnale immediatamente digitalizzato
 - $\bullet\,$ ADC a 14 bit: risoluzione $<1\,\%$ da 5 MeV a 4 GeV
 - clock comune per garantire sincronismo tra i canali
- FPGA per processamento on-line dei segnali

Potenzialità e limiti

• Compattezza e modularità

Front-end

FA7IA

- Catena analogica: pre-amplificatori di carica ed anti-aliasing
- Segnale immediatamente digitalizzato
 - $\bullet\,$ ADC a 14 bit: risoluzione $<1\,\%$ da 5 MeV a 4 GeV
 - clock comune per garantire sincronismo tra i canali
- FPGA per processamento on-line dei segnali

Potenzialità e limiti

- Compattezza e modularità
- Ottime capacità di discriminazione isotopica

Front-end

FA7IA

- Catena analogica: pre-amplificatori di carica ed anti-aliasing
- Segnale immediatamente digitalizzato
 - $\bullet\,$ ADC a 14 bit: risoluzione $<1\,\%$ da 5 MeV a 4 GeV
 - clock comune per garantire sincronismo tra i canali
- FPGA per processamento on-line dei segnali

Potenzialità e limiti

- Compattezza e modularità
- Ottime capacità di discriminazione isotopica
- Elevate soglie di identificazione (2-10 MeV/u)

Metodi di identificazione

Correlazione $\Delta E - E$

- sfrutta la relazione di perdita di energia di Bethe-Bloch
- soglia di identificazione dovuta allo spessore del primo strato

Pulse Shape Discrimination^a

- $\bullet\,$ il tempo di raccolta della carica dipende da $Z\,$ ed $A\,$ del nucleo
- $\bullet\,$ soglia minima corrispondente a circa $\sim50\,\mu m$ di penetrazione

^a N. Le Neindre et al, Nucl. Instr. and Meth. A 701 (145), 2013

Metodi di identificazione

FAZIA

Correlazione $\Delta E - E$

- sfrutta la relazione di perdita di energia di Bethe-Bloch
- soglia di identificazione dovuta allo spessore del primo strato

Pulse Shape Discrimination^a

- $\bullet\,$ il tempo di raccolta della carica dipende da $Z\,$ ed $A\,$ del nucleo
- $\bullet\,$ soglia minima corrispondente a circa $\sim 50\,\mu m$ di penetrazione

Correlazione E - ToF

- in corso prove di fattibilità per l'implementazione in FAZIA
- metodo con la più bassa soglia possibile

^a N. Le Neindre et al, Nucl. Instr. and Meth. A 701 (145), 2013

- SPES (LNL) e Spiral2 (GANIL) entreranno presto in funzione
- fasci di ioni "n-rich" con $E_b < 15 \,\mathrm{MeV/u}$
- la capacità di discriminazione isotopica di FAZIA è adatta
 - occorre abbassare le soglie di identificazione!

- SPES (LNL) e Spiral2 (GANIL) entreranno presto in funzione
- fasci di ioni "n-rich" con $E_b < 15 \,\mathrm{MeV/u}$
- la capacità di discriminazione isotopica di FAZIA è adatta
 - occorre abbassare le soglie di identificazione!

Progetto FURBO

• Studio delle possibilità di riduzione delle soglie in FAZIA:

- SPES (LNL) e Spiral2 (GANIL) entreranno presto in funzione
- fasci di ioni "n-rich" con $E_b < 15 \,\mathrm{MeV/u}$
- la capacità di discriminazione isotopica di FAZIA è adatta
 - occorre abbassare le soglie di identificazione!

Progetto FURBO

- Studio delle possibilità di riduzione delle soglie in FAZIA:
 - implementazione del tempo di volo (in corso...)

- SPES (LNL) e Spiral2 (GANIL) entreranno presto in funzione
- fasci di ioni "n-rich" con $E_b < 15 \,\mathrm{MeV/u}$
- la capacità di discriminazione isotopica di FAZIA è adatta
 - occorre abbassare le soglie di identificazione!

Progetto FURBO

- Studio delle possibilità di riduzione delle soglie in FAZIA:
 - implementazione del tempo di volo (in corso...)
 - utilizzo di rivelatori Si sottili come primo stadio

- SPES (LNL) e Spiral2 (GANIL) entreranno presto in funzione
- fasci di ioni "n-rich" con $E_b < 15 \,\mathrm{MeV/u}$
- la capacità di discriminazione isotopica di FAZIA è adatta
 - occorre abbassare le soglie di identificazione!

Progetto FURBO

- Studio delle possibilità di riduzione delle soglie in FAZIA:
 - implementazione del tempo di volo (in corso...)
 - utilizzo di rivelatori Si sottili come primo stadio
 - utilizzo di rivelatori **alternativi** (camere di ionizzazione, scintillatori plastici veloci, ecc...)

FAZIA

Occorre un rivelatore di start

Start può arrivare da RF del fascio

FURBO

Conclusioni O

Soluzione proposta: no rivelatori di start né RF

F/	١Z	I	A
0	00)	0

FURBO

Conclusioni O

Capacità di identificazione attese

Discriminazione ${}^{12}C - {}^{13}C$

Base di volo di FAZIA: 1 m
FURBO

Conclusioni O

Capacità di identificazione attese

Discriminazione ¹²C – ¹³C

Base di volo di FAZIA: 1 m

soglia disc. isotopica con PSD:

60 MeV

FURBO

Conclusioni O

Capacità di identificazione attese

Discriminazione ${}^{12}C - {}^{13}C$

Base di volo di FAZIA: 1 m

soglia ID con PSD: 25 MeV

soglia disc. isotopica con PSD:

60 MeV

- Mettere a punto la misura del tempo di volo:
 - validare procedura di sincronizzazione dei canali
 - verificare reali capacità di discriminazione

- Mettere a punto la misura del tempo di volo:
 - validare procedura di sincronizzazione dei canali
 - verificare reali capacità di discriminazione
- Acquistare e provare Si sottili:
 - riduzione sensibile delle soglie di identificazione in carica
 - limitazioni all'id. in massa: disomogeneità e straggling

- Mettere a punto la misura del tempo di volo:
 - validare procedura di sincronizzazione dei canali
 - verificare reali capacità di discriminazione
- Acquistare e provare Si sottili:
 - riduzione sensibile delle soglie di identificazione in carica
 - limitazioni all'id. in massa: disomogeneità e straggling
- Acquistare e provare rivelatori alternativi:
 - camera di ionizzazione: soglie minime, ma nessuna discriminazione isotopica!
 - scintillatore plastico veloce: identificazione tramite ToF

- Mettere a punto la misura del tempo di volo:
 - validare procedura di sincronizzazione dei canali
 - verificare reali capacità di discriminazione
- Acquistare e provare Si sottili:
 - riduzione sensibile delle soglie di identificazione in carica
 - limitazioni all'id. in massa: disomogeneità e straggling
- Acquistare e provare rivelatori alternativi:
 - camera di ionizzazione: soglie minime, ma nessuna discriminazione isotopica!
 - scintillatore plastico veloce: identificazione tramite ToF

FORMAZIONE:

Acquisizione di competenze su rivelatori e tecniche di identificazione

- Mettere a punto la misura del tempo di volo:
 - validare procedura di sincronizzazione dei canali
 - verificare reali capacità di discriminazione
- Acquistare e provare Si sottili:
 - riduzione sensibile delle soglie di identificazione in carica
 - limitazioni all'id. in massa: disomogeneità e straggling
- Acquistare e provare rivelatori alternativi:
 - camera di ionizzazione: soglie minime, ma nessuna discriminazione isotopica!
 - scintillatore plastico veloce: identificazione tramite ToF

BANDI PER FONDI ESTERNI:

Implementazione su grande scala delle soluzioni trovate

Backup slides

Leading Edge Discriminator (LED)

Intersection between a fixed threshold T and the signal s(t)

Leading Edge Discriminator (LED)

Intersection between a fixed threshold T and the signal s(t)

Subject to amplitude and rise time walk

Constant-Fraction Discriminator (CFD)

Zero crossing of the bipolar signal $b(t) = f \cdot s(t) - s(t - t_D)$

$$t_D \ge (1-f)t_{rise}$$

Subject to rise time walk

Time measurement methods

Amplitude and Rise time Compensated CFD (ARC-CFD)

Zero crossing of the bipolar signal $b(t) = f \cdot s(t) - s(t - t_D)$

$$t_D < (1-f)t_{rise}$$

Time of flight
$$ToF \equiv t - t_0$$

Flight base $d = |\vec{x}(t) - \vec{x}(t_0)|$
Kinetic energy $E = \frac{1}{2}m\left(\frac{d}{ToF}\right)^2$

A start time mark is needed to measure ToF

Time of flight $ToF \equiv t - t_0$ Flight base $d = |\vec{x}(t) - \vec{x}(t_0)|$ Kinetic energy $E = \frac{1}{2}m\left(\frac{d}{ToF}\right)^2$

Time reference in FAZIA

- all acquired waveforms are referred to the validation time t_V
- applying a digital CFD algorithm to waveforms gives a time mark $t_{CFD} = t t_V + t_{off}$
- t_V is **the same** for all detectors

A start time mark is needed to measure ToF

• First physics oriented experiment with FAZIA

• First physics oriented experiment with FAZIA

 $\bullet\,$ Fully calibrated with mass ID up to $Z\sim24$

- First physics oriented experiment with FAZIA
- \bullet Fully calibrated with mass ID up to $Z\sim24$
- In many events we have at least a fully identified particle which permits to recover t₀

courtesy of A. Buccola, Università di Firenze

courtesy of A. Buccola, Università di Firenze

courtesy of A. Buccola, Università di Firenze

p,d,t stopped in the first Si layer

- PSD doesn't resolve Z < 3 isotopes
- E ToF allows to identify in mass Z = 1 down to 2 MeV

p,d,t stopped in the first Si layer

- PSD doesn't resolve Z < 3 isotopes
- E ToF allows to identify in mass Z = 1 down to 2 MeV

ToF accuracy limitations

- even with a common clock the ADCs are not synchronous (delays introduced by fan-in/fan-out and ADC aperture jitter)
- a synchronization procedure is mandatory

p,d,t stopped in the first Si layer

- PSD doesn't resolve Z < 3 isotopes
- E ToF allows to identify in mass Z = 1 down to 2 MeV

ToF accuracy limitations

- even with a common clock the ADCs are not synchronous (delays introduced by fan-in/fan-out and ADC aperture jitter)
- a synchronization procedure is mandatory

Illuminate all Si1 detectors with the same fast infrared pulse

Timing test

The same timing test performed on the test bench was repeated during the mounting of FAZIAPRE experiment at LNS giving a measured delay of (203 ± 13) ps (added delay was nominally 207 ps)

Timing test

The same timing test performed on the test bench was repeated during the mounting of FAZIAPRE experiment at LNS giving a measured delay of (203 ± 13) ps (added delay was nominally 207 ps)

Permanent infrared LED

During the FAZIAPRE experiment, the infrared LED was mounted inside the scattering chamber and was kept on during all the shift (at a 0.1 Hz rate) to trace channel delays

Timing test

The same timing test performed on the test bench was repeated during the mounting of FAZIAPRE experiment at LNS giving a measured delay of (203 ± 13) ps (added delay was nominally 207 ps)

Permanent infrared LED

During the FAZIAPRE experiment, the infrared LED was mounted inside the scattering chamber and was kept on during all the shift (at a 0.1 Hz rate) to trace channel delays

Calibration and identification still in progress...

Summary and conclusions

- Possibility to perform precise time measurements with FAZIA thanks to the ADC clock distribution
 - common clock doesn't guarantee a perfect synchronization
 - observed time differences between channels up to 1-2 ns

Summary and conclusions

- Possibility to perform precise time measurements with FAZIA thanks to the ADC clock distribution
 - common clock doesn't guarantee a perfect synchronization
 - $\bullet\,$ observed time differences between channels up to $1\text{--}2\,\text{ns}$
- Infrared LED pulses used to synchronize Si1 channels
 - very accurate method (error on the delay correction ${\sim}10\,{
 m ps})$
 - trace possible variations of the channel delay during the run
Summary and conclusions

- Possibility to perform precise time measurements with FAZIA thanks to the ADC clock distribution
 - common clock doesn't guarantee a perfect synchronization
 - observed time differences between channels up to 1–2 ns
- Infrared LED pulses used to synchronize Si1 channels
 - very accurate method (error on the delay correction ${\sim}10\,{
 m ps})$
 - trace possible variations of the channel delay during the run
- E tof correlation may significantly reduce the energy threshold for mass discrimination in FAZIA
 - even without any correction is possible to discriminate Z=1 isotopes down to $2\,{\rm MeV}$
 - $\bullet\,$ expected precision on time measurements: ${\sim}500\,\text{ps}$ after delay corrections

Summary and conclusions

- Possibility to perform precise time measurements with FAZIA thanks to the ADC clock distribution
 - common clock doesn't guarantee a perfect synchronization
 - $\bullet\,$ observed time differences between channels up to $1\text{--}2\,\text{ns}$
- Infrared LED pulses used to synchronize Si1 channels
 - very accurate method (error on the delay correction ${\sim}10\,{
 m ps})$
 - trace possible variations of the channel delay during the run
- E tof correlation may significantly reduce the energy threshold for mass discrimination in FAZIA
 - even without any correction is possible to discriminate Z=1 isotopes down to $2\,{\rm MeV}$
 - $\bullet\,$ expected precision on time measurements: ${\sim}500\,\text{ps}$ after delay corrections
- LED pulses tested during FAZIAPRE experiment
 - we need particle identification and calibration to produce E ToF correlations (probably ready in September)
 - Stay tuned for EuNPC conference in Bologna!

FAZIA collaboration

Publications

- S. Barlini et al, Nucl. Instr. and Meth. A 600 (644-650), 2009
- L. Bardelli et al, Nucl. Instr. and Meth. A 654 (272), 2011
- S. Carboni et al, Nucl. Instr. and Meth. A 664 (251), 2012
- N. Le Neindre et al, Nucl. Instr. and Meth. A 701 (145), 2013
- S. Barlini et al, Nucl. Instr. and Meth. A 707 (89), 2013
- S. Barlini et al, Phys. Rev. C 87 (054607), 2013
- S. Piantelli et al, Phys. Rev. C 88 (064607), 2013
- R. Bougault et al, Eur. Phys. Jour. A 50 (47), 2014
- G. Pasquali et al, Eur. Phys. Jour. A 50 (86), 2014
- A. J. Kordyasz et al, Eur. Phys. Jour. A 51 (15), 2015
- F. Salomon et al, J. Instrum. 11 (C01064), 2016
- D. Gruyer et al, Nucl. Instr. and Meth. A 847 (142), 2017
- G. Pastore et al, Nucl. Instr. and Meth. A 860 (42), 2017