

Results from the 1 tonne x year Dark Matter Search with XENON1T

Elena Aprile Columbia University

LNGS May 28, 2018

The XENON Collaboration: ~165 scientists

The Matter in the Universe: 85% invisible

What is Dark Matter?

- tens of DM models, each with its own phenomenology
- models span 90 orders of magnitude in DM candidate mass
- WIMPs by far the most studied class of DM candidates

WIMPs direct detection

Collisions of WIMPs with atomic nuclei

=> Measure energy of recoiling nucleus

 χ

 $E_{\rm vis}$

X

 Λ

Two-phase Xe Time Projection Chamber as WIMP detector

two signals for each event:

6

The phases of XENON

XENON10 XENON100 XENON1T XENONnT

2005-2007	2008-2016	2012-2018	2019-2023
25 kg - 15cm drift	161 kg - 30 cm drift	3.2 ton - 1 m drift	8 ton - 1.5 m drift
~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	~10 ⁻⁴⁷ cm ²	~10 ⁻⁴⁸ cm ²

Impressive evolution of LXeTPCs as WIMP detectors

XENON1T

The XENON1T Experiment @ LNGS

The XENON1T Experiment @ LNGS

E. Aprile et al., "The XENON1T Dark Matter Experiment", EPJ C 77, 881 (2017).

Water Cherenkov Muon Veto

- 700 ton pure water instrumented with 84 high-QE 8" PMTs
- Active shield against muons
- Trigger efficiency > 99.5% for muons in water tank
- Cosmogenic neutron background suppressed to < 0.01 events/ton/yr

The XENON1T Time Projection Chamber

3.2 t LXe @180 K 2.0 t active target viewed by 248 PMTs ~1 meter drift length ~1 meter diameter

A PAR

Understanding the Detector

The XENON1T Light Detection System

- 248 3-inch low-ra Hamamatsu R11410-21 PMTs arranged in two arrays.
- 35% QE @ 178 nm
- each PMT digitized at 100MHz
- operating gain 1-5x10⁶ @
 1.5kV stable within 1-2 %
- SPE acceptance ~94%
- High reflectivity PTFE lining
 of entire inner volume
- Highly-transparent (>90%) grid electrodes

127 PMTs in the top array

121 PMTs in the bottom array

The XENON1T Light Detection System

 Highly-transparent (>90%) grid electrodes

Calibration Sources

Stable background conditions after a couple days (10.6h longest $T_{1/2}$)

9.4 keV and 32.1 keV lines (~150 ns delay) homogeneous in volume

<section-header>Neutrons: SignalResponseImage: Signal stateImage: Signal stateType: External
Freq: Signal state

Length: 6 weeks (AmBe) 2 days (generator)

XENON1T: science and calibration data

- 279 days high quality data (livetime-corrected) spanning more than 1 year of stable detector's operation. The LXeTPC has been "cold" since Spring 2016
- 1 tonne x year exposure given 1.3 tonne fiducial volume: the largest reported to-date with this type of detector
- Experiment still running smoothly and collecting more data

Data Analysis: overview

Light and Charge Signals Stability

Position dependence of light (solid angle) and charge (attenuation length) signals very well understood through measurement with ^{83m}Kr, ²²²Rn alphas. Excellent agreement with optical Monte Carlo simulations and with model of purity evolution

Light and charge yield stability monitored with several sources:

- ²²²Rn daughters
- Activated Xe after neutron calibrations

18

- ^{83m}Kr calibrations
- Stability is within a few %

Energy Resolution

- Good agreement between predicted and measured background spectrum
- Kr: 0.66 ppt; Pb214: ~ 10 uBq/kg
- Gammas based on screening measurements

- Energy reconstructed from anti correlated S1 and S2. Excellent linearity from keV to MeV
- Best energy resolution measured with this large LXeTPC ~1.6% resolution (sigma) at 2.5 MeV

Position Reconstruction

X-Y reconstruction via **neural network**:

- Input: charge/channel top array
- Training: Monte Carlo simulation

Position resolution using ^{83m}Kr

- Two interactions (9, 31 keV), same x-y
- Position resolution (1-2 cm)
- PMT diameter (7.62 cm)

Position corrections using ^{83m}Kr

- Drift field distortion
- Localized inhomogeneities from inactive PMTs
- Data-derived correction verified by comparison to MC with several event sources

Understanding the Backgrounds

Electronic Recoil Backgrounds

Rn222:10 uBq/kg •

²²²Rn

²¹⁸Po

²¹⁴Pb

²¹⁴Bi

α

α

α

3.8 d

3.05 min

26.8 mir

19.9 mir

5.5 MeV

6.0 MeV

- Achieved with careful surface emanation control and measurements ٠
- Further reduction with online cryogenic distillation
- Kr85 : sub-ppt Kr/Xe
 - Achieved with online cryogenic distillation

• Materials radioactivity (HPGe gamma screening): subdominant

ER Background Evolution

Predicted: (considering 10 uBq/kg of ²¹⁴Pb, and on average 0.66 ppt of Kr):

 (76 ± 8) events / $(ton \cdot year \cdot keV)$

Measured:

(82 +5-3 (syst.) ± 3 (stat)) events / (ton·year·keV)

Lowest ER background ever achieved in a DM detector !

Nuclear Recoil Backgrounds

Cosmogenic µ-induced neutrons significantly reduced by rock overburden and muon veto

- Coherent elastic v-nucleus scattering, constrained by ⁸B neutrino flux and measurements, is an an irreducible background at very low energy (1 keV)
- Radiogenic neutrons from (α, n) reactions and fission from ²³⁸U and ²³²Th: reduced via careful materials selection, event multiplicity and fiducialization

Source	Rate [t ⁻¹ y ⁻¹]	Fraction [%]
Radiogenic n	0.6 ± 0.1	96,5
CEvNS	0,012	2,0
Cosmogenic n	< 0.01	< 2.0

(Expectations in 4-50 keV search window, 1t FV, single scatters) JCAP04 (2016) 027

Accidental Coincidence Background

Surface Background

40

20

- Pb210 and Po210 plate-out on PTFE surface produce events with reduced S2 -> can be mis-reconstructed into NR signal region
- Suppressed by fiducialization of volume

Surface Background

Pb210 and Po210 plate-out on PTFE surface produce

Surface Background

Pb210 and Po210 plate-out on PTFE surface produce

Response to Electronic and Nuclear Recoils

Calibrating ERs and NRs

Calibrating ERs and NRs

Dark Matter Search Data: Blinded and salted

- Blinding: to avoid potential bias in event selection and the signal/background modeling the nuclear recoil ROI (S2 vs S1 only) was blinded from the start of SR1 analysis (and SR0 re-analysis).
- Salting: to protect against post-unblinding tuning of cuts and background models, an undisclosed number and type of event was added to data

Fiducial Volume Optimization

Optimize FV prior to unblinding to reduce materials and surface background

- FV volume increased from 1 tonne (in SR0 First Result) to 1.3 tonne thanks to improvements in position reconstruction, including PTFE charge-up and field corrections
- new surface background model allowed inclusion of radius, R, in statistical inference to maximize useful volume. Analysis space became cS1, cS2b, R and Z

Event Selection & Detection Efficiency

- Detection efficiency dominated by 3-fold coincidence requirement
 - Estimated via novel waveform simulation including systematic uncertainties
- Selection efficiencies estimated from control or MC data samples
- Search region defined within 3-70 PE in cS1
- 10 GeV (dashed), 50 GeV (dotted) and 200 GeV (dashed-dotted) WIMP spectra shown

Background prediction and Unblinding

Mass	1.3t	1.3t
(S2, S1)	Full	Reference
ER	627±18	1.62±0.30
Neutron	1.43±0.66	0.77±0.35
CENNS	0.05±0.01	0.03±0.01
AC	0.47±0.27	0.10±0.06
Surface	106±8	4.84±0.40
BG	735±20	7.36±0.61
Data	739	14
WIMPs best-fit for m=200 GeV: 4.7 10 ⁻⁴⁷ cm ²	3.56	1.70

- Reference region is defined as between NR median and NR -2sigma
- ER is the most significant background and uniformly distributed in the volume
- Surface background contributes most in reference region, but its impact is subdominant in inner R
- Neutron background is less than one event, and impact is further suppressed by position information
- Other background components are completely sub-dominant
- Numbers in the table are just for illustration, statistical interpretation is done based on profile likelihood analysis

Dark Matter Search Results

- Results interpreted with unbinned profile likelihood analysis in cs1, cs2, r space
- piechart indicate the relative PDF from the best fit of 200 GeV/c² WIMPs with a cross-section of 4.7x10⁻⁴⁷ cm²

Spatial Distribution of Dark Matter Search Data

- Results interpreted with unbinned profile likelihood analysis in cS1, cS2, r space
- Core volume to distinguish WIMPs over neutron background

Statistical Interpretation

- No significant (>3 sigma) excess at any scanned WIMP mass
- Background only hypothesis is accepted although the p-value of ~0.2 at high mass (200 GeV and above) does not disfavor a signal hypothesis either

- Extended unbinned profile likelihood analysis
- Example left: Background and 200 GeV WIMP signal best-fit predictions, assuming 4.7 x 10⁻⁴⁷ cm², compared to data in 1.3 t and 0.9 t
- Most significant ER & Surface backgrounds shape parameters included
- Safeguard to protect against spurious mismodeling of background

XENON1T Dark Matter Search Results

- Most stringent 90% CL upper limit on WIMPnucleon cross section at all masses above 6 GeV
 - Factor of 7 more sensitivity compared to previous experiments (LUX, PandaX-II)

~ 1sigma upper fluctuation at high WIMP masses, could be due to background or signal

Minimum at 4.1x10⁻⁴⁷ cm² for a WIMP of 30 GeV/c²

The next step: XENONnT

Aprile et al., Eur. Phys. J. C (2017) 77: 881. XENON1T sub-systems Aprile et al., JCAP 77 (2016), 358. online Rn-removal Aprile et al., Eur. Phys. J. C (2017) 77: 275. online Kr-removal Aprile et al., JCAP 4 (2016), 27. sensitivity

Minimal Upgrade

Background

Record low-back levels in XENON1T dominated by ²²²Rn-daughters.

Identified strategies to effectively **reduce** ²²²**Rn by ~ a factor 10**.

Fast Turnaround

Use *XENON1T subsystems,* already tested

Fast pace:

Installation starts in 2018 commissioning in 2019

The XENON1T infrastructure and sub-systems were originally designed to accommodate a larger LXe TPC. *XENONnT TPC* features: total Xe mass = 8 t target mass = 5.9 t *fiducial mass = ~4 t*

Fiducial Xe Target

XENON1T Infrastructure and sub-Systems (already operative) Aprile et al., Eur. Phys. J. C (2017) 77: 881 .nlillin. **Radon Distillation** New TPC LXe Purification **Neutron Veto** To online remove the 5.9-ton Time Projection To achieve fast cleaning of the large To tag and measure in situ ²²²Rn emanated inside LXe volume (5000 SLPM) neutron-induced background Chamber

the detector

Summary

- Successfully operated the first multi-ton scale LXeTPC for > 1 year
- Achieved lowest background in any DM detector: 0.2 events / (t keV d)
- With XENON1T we have surpassed the sensitivity projections of the proposed XENON program and yet have found no sign of WIMPs
- The result from a blind analysis of 1 tonne x year data places strongest limit above 6 GeV/c² on WIMP-nucleon SI cross-section at 4.1x10⁻⁴⁷ cm² for a WIMP of 30 GeV/c²
- the search with XENON1T continues until its upgrade with a larger and better detector, XENONnT, to enable another boost in sensitivity

40