

Laser ad elettroni liberi nei soft X-ray: sorgenti di radiazioni coerenti ultra-brillanti per applicazioni a campioni biologici

Soft X-rays Free Electron Lasers: ultra-bright, coherent radiation sources to look at biological samples

Francesco Stellato

INFN Roma Tor Vergata

May 16th , 2018

Free Electron Laser - Applications

FELs are very large (???) X-ray microscopes...

Structural investigation

Biomolecules: Proteins, viruses, cells

Materials: magnetic materials, semiconductors, nanoparticles, sooth, ashes

Giornata della luce UNESCO

May 16th , 2018

Free Electron Lasers

Optical microscopes use visible light Diffraction limited resolution:

X-rays are needed to look at nano/micro- scale Synchtrotrons & Free Electron Lasers provide photons in this range

Giornata della luce UNESCO

May 16th , 2018

FELs Vs Synchrotrons

- FELs have higher peak brilliance than synchrotrons → Diffract-and-destroy
- FELs emit femtosecond pulses, synchrotrons picosecond pulses → Ultrafast time-resolution
- FELs have higher coherence than synchrotrons Coherent imaging experiments
- FELs & synchrotrons are both tunable in wavelength and polarization

FEL Time structure

Besides exploiting FELs high number of photons,

one can also exploit their time structure

May 16th , 2018

FELs deliver about the same number of photons/s as synchrotrons, but packed in short pulses

May 16th , 2018

Diffract & Destroy @ Free Electron Lasers

One pulse, one measure

A detectable signal must be recorded before the sample is destroyed

Many (10⁶) patterns need to be measured and analyzed Experimentally & computationally challenging...

May 16th , 2018

Coherent Imaging

When the FEL photons hit the sample, a **diffraction pattern** is originated **The diffraction pattern is the |FT| of the sample electron density**

|FT|⁻¹

Diffraction pattern k - space

May 16th , 2018

Diffract & Destroy @ Free Electron Lasers

May 16th , 2018

Bio-samples Coherent Imaging

2D images can be obtained from a single shot

Cells, organelles, protein aggregates

May 16th , 2018

Bio-samples Coherent Imaging

2D images can be obtained from a single shot

Diffraction Pattern

2D images of C. gracile living cells acquired at the **LCLS FEL**

Van der Shoot, ..., FS, et al. Nature Comm (2015) Van der Shoot, ..., FS, et al. Sci Data (2016)

May 16th , 2018

Bio-samples Coherent Imaging

3D images can be obtained by merging info from several shots

Since the sample is destroyed by the interaction with FEL photons, many identical samples are needed

Viruses, protein fibrils, single protein molecules...

May 16th , 2018

Bio-samples Coherent Imaging

3D images can be obtained merging info from several shots Since the sample is destroyed by the FEL photons, many identical samples are needed

Giornata della luce UNESCO

May 16th , 2018

FEL Coherent Imaging

FEL feature	Method	
Brilliant pulses	«high» signal-to-noise ratio	High resolut
Short pulses	Diffraction before destruction	Damage-fre observed wl
Many pulses	Time-resolved experiments	Irreversible
PHOTOGRAPHY	→ MOVIE	

The to-be movie catalogue Viruses vs Nuclei

The birth of a protein filament **Light on plants**

. . .

May 16th , 2018

Seibert *et al* **Nature (2011)** Single mimivirus particles intercepted and imaged with an X-ray laser.

Starodub *et al* **Nature Communications** (2012) Single-particle structure determination by correlations of snapshot X-ray diffraction patterns.

Hantke *et al* **Nature** Photonics (2014) High-throughput imaging of heterogeneous cell organelles with an X-ray laser.

Van Der Schot *et al* **Nature Communications (2014)** Imaging single cells in a beam of live cyanobacteria with an X-ray laser.

Ekeberg *et al* **Physical Review Letters (2015)** Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser.

Reddy *et al* Scientific Data (2017)

Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source.

Huang *et al* **Nanoscale (2018)** Free-Electron-Laser Coherent Diffraction Images Individual Drug-Carrying Liposome Particles in Solution

Istituto Nazionale di Fisica Nucle

May 16th , 2018

What energy range?

In principle, the lower the wavelength, the higher the resolution but **X-ray cross section** decreases with wavelength Small molecules only scatter very few photons

Maybe in the future, with **huge accelerators** or **plasma sources**...

Röntgen's wife hand

May 16th , 2018

Water Window Coherent Imaging

Energy region between Oxygen and Carbon K-edge 2.34 nm – 4.4 nm (530 eV -280 eV)

Water is almost transparent to radiation in this range while nitrogen and carbon are absorbing (and scattering)

Coherent Imaging of biological samples living in their native state Possibility to study dynamics

> Wavelength limited, photon flux depending resolution

May 16th , 2018

Coherent EUV-soft x-ray FELs

Water Window Coherent Imaging

Coherent Diffraction Pattern

A typical coherent imaging experimental setup

May 16th , 2018

Time-resolved experiments are possible (mainly, but not necessarily only, photo-induced processes)

Giornata della luce UNESCO

May 16th , 2018

Giornata della luce UNESCO

May 16th , 2018

- Ultra-high vacuum chamber
- Beam diagnostics: photon-in and phot
 I₀ monitor and atte
- Sample diagnostics: time-of-flight spec
- Synchronized external lasers
 (tunable, high power optical, IR, THz)
- Split-and-delay element
- Sample delivery systems Liquid jets Aerosols Fixed targets

Villa et al. Rev Sci Instr (2018)

Micrometer-sized liquid jets are produced

May 16th , 2018

Outlook

Plasma acceleration a new way to generate FEL radiation

FEL imaging – Time-resolved experiments *in vivo* molecular movies

Giornata della luce UNESCO

May 16th , 2018

Acknowledgments

SPARC_LAB, LNF, La Sapienza, Uni Ts, CNR, ...

A. Cianchi, D. Cirrincione, M. Coreno, S. Dabagov,M. Ferrario, L. Giannessi, S. Lupi, C. Masciovecchio,A. Marcelli, V. Minicozzi, S. Morante, A. Ricci,F. Stellato, A.Vacchi, F. Villa

& many others... Thank you for the attention The Biophysics Group in Tor Vergata

Silvia Morante Giancarlo Rossi Francesco Stellato Emiliano De Santis Ayshwaria Dhar Giulia Romoli