DE LA RECHERCHE À L'INDUSTRIE

T. Proslier, CEA

N. Groll, C. Cao, Argonne National Laboratory

T. Junginger, Lancaster University (Nb/Cu, mutlilayers)

J.F. Zasadzinski, Illinois Institute of Tehnology

A. Sunet, S. Calatroni, CERN (Nb/Cu)

A. Romanenko, A. Grassellino, *Jlab (bulk Nb)*

G. Ciovati, A-M. Valente, FNAL (bulk Nb, Nb/Cu, mutlilayers)

D. Hall, M. Liepe, Cornell University (Nb₃Sn/Nb)

10/10/2018

Bulk Nb : Hot and cold spots N doped Nb

Thin films: Nb₃Sn/Nb Nb/Cu (HIPIMS, DCMS)

Bulk Nb : Hot and cold spots N doped Nb

□ Thin films: Nb₃Sn/Nb Nb/Cu (HIPIMS, DCMS)

- DOS $(E_F) \neq 0 \rightarrow dissipation @ T=0 K$
- $DOS(E_F)$ (B, T, Δ , r), $R_S = \langle DOS(E_F) (B, T, \Delta) \rangle_r$
- Saturation mechanisms of the DOS? -> Inelastic scattering (Γ)

Background SRF cavities

At fixed temperature:

- Low Acceleration Gradient: Q is dominated by Δ, Γ (Static)
- Higher Acceleration Gradient: vortex penetration/dissipation dominate (dynamic)

Background SRF cavities

How to measure the DOS? Tunneling Spectroscopy

PCT apparatus

- Temp: 1,3 K Magnetic field: 6,5 T
- Variable resistance: $2.10^2 2.10^9 \Omega$.
- Cartography: 10 µm 2 mm
- Fast measurements: 100-300 junctions/5hrs
- Transport measurements.
- Cooling down: From 300 – 80K ~ 1.5 K/min From 80 – 4.2 K ~ 1 K/min

Calibration

Bulk Nb : Hot and cold spots N doped Nb

Thin films: Nb₃Sn/Nb Nb/Cu (HIPIMS, DCMS)

Hot and Cold Spots from HFQS (FNAL)

N –Ti doped EP Nb (FNAL, JLAB)

Hot and cold spot Nb samples

- Hot spot Nb: gap values $< \Delta_{Nb} (1.5 1.65 \text{ meV}) + \text{Zero bias peaks} \text{High } \Gamma$
- Cold spot Nb: gap values = Δ_{Nb} + no ZBP Low Γ values

MEASUREMENTS – HOT SPOTS

MAPS

PROXIMITY EFFECT – ORIGIN?

High field Q slope - Hydrides revealed by TEM

Penetration field in proximity effect:

T~ 0 K : H_B ≈ Φ₀/(6.λ_N.d), $\lambda_N = \sqrt{(mc^2/4πne^2)}$ -> d ~ 20 nm.

A. Fauchère et G. Blatter PRB 56, 14 102 (2017)

Y. Trenikhina et al. JAP 117, 154507 (2015)

DE LA RECHERCHE À L'INDUSTRIE

N DOPED SAMPLES

- No EP: gap values $<< \Delta_{Nb}$ + High Γ + Nb₂N phases ~ 30 nm
- After EP (5 μ m): gap values ~ Δ_{Nb} + Tc < Tc_{Nb}+ Low Γ values, no ZBP

MAPS

- Homogeneous superconducting properties:
- Slightly decreased Tc and a ratio $2\Delta/K_BT_C = 4$
- Same $2\Delta/K_BT_C$ measured by R_{BCS} vs MFP
- Reproducibly found in Ti doped Cavity (Jlab)

M. Martinello et al. APL109, 062601 (2016)

- Homogeneous superconducting Δ values (1.5-1.6 meV) close to bulk Nb and low Γ/Δ values (4-5%) correlate with the anti-Q slope effect.
 -> A. Gurevich non equilibrium theory.
- Homogeneous superconducting Δ values (1.5-1.6 meV) close to bulk Nb and larger Γ/Δ values (8-12%) measured on LTB Nb samples without HFQS correspond to RF performance with lower Q than the doped cavities, i.e. the absence of anti-Q slope, and an increased dissipation up to high accelerating fields.
- Inhomogeneous superconducting properties with values signicantly smaller than bulk Nb and large Γ/Δ values (8-15%) are measured in a hot spot sample responsible for the HFQS.

DE LA RECHERCHE À L'INDUSTRI

Tunnel barrier height and thickness:

$$\frac{G(V)}{G(0)} = 1 - \left(\frac{A_0 \Delta \varphi}{16\bar{\varphi}^{3/2}}\right) eV + \left(\frac{9}{128}\frac{A_0^2}{\bar{\varphi}}\right) (eV)^2$$

W.F. Brinkman, R.C. Dynes et R. Rowell JAP, 41, 5 (1970)

d, thickness of the oxide $\Phi,$ work function of the oxide $\Phi_{\text{TIP}},$ work function of the tip

Bulk Nb : Hot and cold spots N doped Nb

□ Thin films: Nb₃Sn/Nb Nb/Cu (HIPIMS, DCMS)

Nb₃Sn/Nb - Cornell

Have we reached the limits of Nb₃Sn ?

Heat shields

Nb₃Sn/Nb – varying deposition

Sample	Coating Temp (ºC)	Coating Time (hr)	Annealing Temp (⁰C)	Annealing Time (hr)	Position	Nucleation agent (SnCl ₂)	ΔT(⁰C)	Comments
ERL1-4 Sept	1200	3	1100	0.5	Low	YES	150	
ERL1-4 Jan	1200	3	1100	6.5	Low	YES	150	
Ceres	1200	3	1100	16	Low	YES	150	
TE1-7	1200	8	1100	6.5	Low	YES	150	

Nb₃Sn/Nb (Cornell) – TEM

- Interface Nb-Nb₃Sn , grain boundaries
- Pockets near the surface

IRFU/Service

8th workshop on thin films and new ideas for RF superconductivity - INFN

Crystallite ~ 100 nm (XRD)

60% Nb₃Sn

Nb₃Sn/Nb (Cornell) - PCT

Nb₃Sn/Nb correlations RF test

- Quench field (high field) increase linearly with the minimum of the PCT superconducting gap
- Surface impedance (low field) decreases linearly with the average PCT superconducting gap
- Q-slope increases with Γ/Δ ratio
- Optimized cooling procedure for ERL1-4 Sept: 69 mT -> 77 mT (18 MV/m)

Nb_gSn/Nb - simulation

Collaboration with A. Glatz (OSCon Project = Optimizing supercond. Transport properties Through large scale simulation).

- Nb3Sn film under AC field (1,3 Ghz) parallel to the surface, volume (256 ξ)³ ~ (1,3 μ m)³
- Approximations: Time Dependent Ginzburg-Landau (TDGL) -> $\lambda = \infty$ and T ~ T_C
- Dissipation = time variation of the order parameter -> Quench = pénétration de vortex

Nb₃Sn/Nb - simulation

Variation of superconducting properties: Case of Low Tc inclusions 6K

Vortex penetration at lower external field amplitude

Nb₃Sn/Nb - simulation

Variation of superconducting properties: Surface layer Low Tc 6K

Two Vortex penetration fields: Low Tc phase and High Tc phase.

Nb₃Sn/Nb - Limit

- Good Agreement between simulations and experiments
- Set a limit to the maximum accelerating field E_{MAX} to ~ 17-18 MV/m
- Nb₃Sn good for Q but what about E_{MAX} ?

Nb/Cu (CERN)

Different deposition techniques:

Future Tunneling spectroscopy

- Ideal technic to probe surface superconducting properties
- Tested on multiple SRF samples, bulk or films
- Limits: DC measurements -> How about field dependence? (Magnétometry, RF tests!)
- chemical, structural characterization?

Future directions:

- Mapping at smaller scale in continuous piezo mode ~ 800 nm, resolution ~ 0,1 nm
- -> Gap and T_c near defects?
 -> vortex lattice

Pista

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex

Etablissement public à caractère industriel et commercial | R.C.S Paris B 775 685 019

Direction de la Recherche Fondamentale Institut de recherche sur les lois fondamentales de l'Univers Service

- Processus de diffusion : 1000°C -> Segregation de phase 17% Sn and Pure Nb
- Accumulation de region à 17%
- Suggère plus haute concentration Sn

