Two different origins of Qslope problem in Nb film cavity for HIE-ISOLDE

<u>A. Miyazaki^{1,2}</u> W. Venturini Delsolaro¹

¹ Organisation européenne pour la recherche nucléaire (CERN), Switzerland

² School of Physics and Astronomy, the University of Manchester, UK

Email: Akira.Miyazaki@cern.ch

ThinFilm Workshop 2018 @ Legnaro

Series production: machined + **one** welding

The **typical** Q-slope in Nb/Cu cavities Q-slope from low RF field B_{peak} [mT] 50 10 20 30 40 60 o° 10⁹ • 4.6K 2.4K 🛨 10W nominal 10⁸ 5 2 3 6 U 4

E_{acc} [MV/m]

Series production: machined + **one** welding

New design: fully machined + no welding

1st cavity: good but no big surprise

cavity

New design: fully machined + no welding

2nd cavity with reduced B-field (fully trapped)

Seamless

cavity

New design: fully machined + no welding

cavity

Trapped flux effect in residual resistance $R_{res}(E)$

Vortex oscillation model (Bardeen-Stephen)

• Conventional models: linearized forces

 \rightarrow Constant resistance $R_{fl,0}H_{ext}$ and no prediction on $R_{fl,1}H_{ext}E_{acc}$

- Thermal instability? Non-linear effect??
- Collective pinning model (D. Liarte et al arXiv:1808.01293), non-linear pinning potential (see Ruggero's talk arXiv:1810.00540)

You are welcome to WG3 in TTC/ARIES topical workshop on flux trapping and magnetic shielding @ CERN 8-9 Nov 2018

An empirically found formula to fit the data

$$R_s(T,B) = \frac{A}{T} \exp\left(-\frac{\Delta}{k_B T} + \alpha B\right) + R_{res}$$

Such an exponential dependence has been reported by others (bulk Nb and Nb/Cu)

- 1. R. L. Geng (Cornell) "Thermal analysis of a 200MHz Nb/Cu cavity" SRF2001
- 2. D. Longuevergne (IPNO) "Magnetic dependence of the enegy gap:..." SRF2013

Temperature dependence of α

 $\alpha \propto T^{-1}$ from the data \rightarrow change the parameter by $\alpha = M/k_B T$ $R_s(T,B) = \frac{A}{T} \exp\left(-\frac{\Delta}{k_B T} + \frac{MB}{k_B T}\right) + R_{res} \rightarrow R_s(T,B) = \frac{A}{T} \exp\left(-\frac{\Delta - MB}{k_B T}\right) + R_{res}$ This new constant *M* has a dimension of magnetic moment [JT⁻¹]

About gap reduction: two different scenarios

Global thermal feedback model

Manually adjust the thermal resistance R_B to get reasonable $R_s^{FB}(T_0, H, R_B)$

This model never explains this Q-slope and its T-dependence

Vaglio-Palmieri model V. Palmieri and R. Vaglio, Supercond. Sci. Technol, 29,015004 (2016)

Surface resistance increased by *quenched hot spots* can be expressed as

$$\overline{R_s}(T,H) = \int_{0}^{\infty} R_s^{FB}(T_0,H,R_B) \boldsymbol{f}(\boldsymbol{R_B}) dR_B ,$$

Distribution function of thermal boundary resistance can be obtained from Q-slope

This model is not consistent with the T-dependence of this Q-slope

T-dependent Q-slope is a universal phenomenon in QWRs

Z.A. Conway et al., NIM B 350 (2015) 94–98

Let's apply Vaglio-Palimieri algorithm for enhanced-B data

Enhanced-B of the seamless cavity

- On contrary to the assumption of the model, this model does not work for the intrinsic Qslope but works for non-ideal Q-slope caused by trapped field or thermal gradient effect
- The linear slope usually might show similar observation accidentally...

A new model: spatial distribution in $\rm H_{\rm sh}$

Nb/Cu film could have a distribution on its quality

Inspired by the thermal boundary approach proposed by Vaglio-Palmieri

Magnetic impurity $\alpha = \pi \xi_0 / l_m$ reduces H_{sh} and T_c

F. Pei-Jen Lin and A. Gurevich, PRB 85, 054513 (2012)

Local defects on H_{sh}

- Most of the surface is clean, but there could be local defects where H_{sh} and T_c are reduced
- Inhomogeneous impurity (V. Ngampruetikorn and J. A. Sauls arXiv:1809.04057) may not affect because sputtered surface is clean in λ_L

Temperature dependence of the distribution H_{sh} is supposed to be scaled by

$$H_{sh}(T) \sim H_{sh}(0) \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$$

Global surface resistance $\overline{R_s}(H_{RF})$

For simplicity, RF field distribution in the cavity is assumed to be constant H_{RF} The observable surface resistance from Q₀ measurement is

$$\overline{R_s}(H_{RF},T) = \int_0^\infty R_s(H_{RF},H_{sh},T)f(H_{sh},T)dH_{sh},$$

where $f(H_{sh})$ is the distribution of H_{sh} we suppose, and $R_s(H_{RF}, H_{sh}, T)$ is the local surface resistance.

A phenomenological model of the local surface resistance is tricky. The simplest estimate is

- 1. $H_{RF} < H_{sh}(T) [H_{sh} > H_{c} > H_{c1}]$
 - Non-equilibrium BCS resistance in Mixed state is not fully understood (Cf. anti-Q-slope by Gurevich PRL 2014)
 - Extrapolate BCS-MB is a honest guess (constant in H_{RF})
- 2. $H_{sh}(T) < H_{RF} < H_{c2}(T)$
 - The Beam model predicts $R_s \propto H_{RF}$
 - Isn't it applicable only near $H_{sh}(T)$? (Taylor expansion??)
- 3. $H_{c2}(T) < H_{RF}$
 - Non-linear Ohmic loss is a thermal problem we don't care
 - Constant R_n may be enough

Comparison with the measurement

Optimize the width of the $\rm H_{sh}$ distribution and the slope of the Bean model to fit 2K data

Manually increase the temperature of the model to fit the 4.5K data

- This model does not quantitatively reproduce the temperature dependence of the Q-slope
- But qualitatively close \rightarrow Measurement of H_{sh} (H_{c1}) distribution will be a key

Summary

- The new seamless cavity gave an insight to two different origins of Q-slope (QWR shape, 100MHz, DC-bias sputtering)
 - Linear term caused by trapped flux
 - Curvature (exponential) term depends on temperature like BCS resistance
- Trapped flux oscillation requires non-linear extension of conventional theories
- An empirical approach shows that the data can be fitted by naïve gap reduction
 - Missing justification from microscopic theory
- Pure thermal models were disfavored
 - Global thermal feedback did not work
 - Local quenched thermal feedback did not work
- H_{sh}-distribution model behaves qualitatively similar to the data
 - A toy distribution of H_{sh} caused by local defects
 - Temperature dependence is qualitatively similar to the data but not perfect
 - Comparison to direct measurement of H_{c1} distribution is of interest

Future prospects

- Application of seamless Nb/Cu QWR for different projects: low- β performance does not require high-gradient and our cavity is competitive to bulk Nb
- Magnetic shielding in film cavities \rightarrow contrary to literature!
- Elliptical cavity 1.3 GHz \rightarrow different substrate and coating
- Q-slope study in other films: Nb₃Sn/Cu \rightarrow See Marco Arzeo's talk