MICROSCOPIC INVESTIGATION OF MATERIALS LIMITATIONS OF SUPERCONDUCTING RF CAVITIES

Bakhrom Oripov

Steven M. Anlage

CNAM Center for Nanophysics and Advanced Materials

This work is funded by US Department of Energy grant # DESC0017931 and CNAM

Outline:

- 1. What is the issue?
- 2. Why is SRF material science needed?
- 3. How Magnetic Microwave Microscopy works?
- 4. What did we measure?
- 5. What is the origin of this data?
- 6. Where do we plan to go with this?

Superconducting Radio Frequency (SRF) Cavity

 \vec{E} – Electric Field \vec{B} – Magnetic FieldChargesBeam Bunch

https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.buckets_and_bunches http://mchung.unist.ac.kr/category/notesslides/

Quality factor vs Peak Field

RF test results at 2.0 K for the 1.497 GHz, 5-cell HC cavity after different surface preparation processes.

Outline:

- 1. What is the issue?
- 2. Why is SRF material science needed?
- 3. How Magnetic Microwave Microscopy works?
- 4. What did we measure?
- 5. What is the origin of this data?
- 6. Where do we plan to go with this?

Defects/Processes limiting SRF Performance

500 x 200 µm pit

- 1. Surface Roughness
- 2. Pits
- 3. Welds
- 4. Grain Boundaries
- 5. Nb Oxides
- 6. Hydrogen Poisoning
- 7. Magnetic Impurities
- 8. Trapped Flux

Cavity Temperature Map

A. Gössel D. Reschke (DESY, 2008)

Outline:

- 1. What is the issue?
- 2. Why is SRF material science needed?
- 3. How Magnetic Microwave Microscopy works?
- 4. What did we measure?
- 5. What is the origin of this data?
- 6. Where do we plan to go with this?

Near-Field B_{rf} Microscope

Distance from Probe (nm)

Why Harmonics?

D. E. Oates, Y. D. Agassi, B. H. Moeckly, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 17, NO. 2, JUNE 2007

2) Superconductor is the main source of Nonlinearity

Advantages of this method

	SRF	Magnetic Probe Microscopy
Temperature	2 K	3.6 К - Т _с
RF Magnetic Field	≈ 200 mT	≈ 200 mT
Frequency	1.3 GHz	1.0 – 6.0 GHz

- RF Characterization
- Localized / No Edge Effect
- Can Measure Flat Samples of any shape

Outline:

- 1. What is the issue?
- 2. Why is SRF material science needed?
- 3. How Magnetic Microwave Microscopy works?
- 4. What did we measure?
- 5. What is the origin of this data?
- 6. Where do we plan to go with this?

HOW

WHY

WHERE

WHEN

WHAT

WHO

Bulk Nb Sample

Deformed ($\epsilon \sim 0.4$) single crystals pulled apart, Etched for 10 min then welded back together

Microwave Microscope Probe and Sample Coaxial Cable Thermometer **4K Plate** Sample **Transmission Line** 1111111 **Connection to** Probe Probe

Bulk Nb Data: Closer look at Dips

Nb Film on Copper samples from CERN

- Deposited by high-power impulse magnetron sputtering (HIPIMS)
- Highly Granular (grain size around 10 nm)
- 1 µm Nb / Cu

Point Contact Spectroscopy:

- ✓ Broadened DOS
- ✓ Finite 0-bias conductance (ZBC)
- **Numerous ZBCP**

T. Junginger, SRF2015, TUPB042

Nb on Copper samples from CERN 1.4 120 1.2 Third Harmonic Response (µV) T=3.7K T=4.1K 100 Dots = Data, T=5.4K 1 Lines are a guide Onset Field (a.u.) to the eye 80 H_{Onset} 0.8

60

40

20

0

120

2.2 GHz

0.6

0.4

0.2

0

0

20

 H_1

40

Η₂

H₃

60

Input RF Field Amplitude (a.u.)

80

100

16

6

5

Temperature(K)

H₆

H₃

7

Input RF field amplitude (a.u.)

Similar Results Seen on Other Film Samples

Similar Results Seen on Bulk Samples

Bulk and Film samples can show either periodic or non-periodic harmonic response depending on location

Outline:

- 1. What is the issue?
- 2. Why is SRF material science needed?
- 3. How Magnetic Microwave Microscopy works?
- 4. What did we measure?
- 5. What is the origin of this data?
- 6. Where do we plan to go with this?

HOW

WHY

WHERE

WHEN

WHAT

WHO

Current Driven Resistively and Capacitively Shunted Josephson Junctions (RCSJ) model

J. Halbritter, " On the Oxidation and on the Superconductivity of Niobium," J. Appl. Phys. A <u>43</u>, 1 (1987).

Alternative proposal (Kubo and Gurevich, Monday talk) S'-I-S layering

J. McDonald and John R. Clem, " Microwave response and surface impedance of weak links," Phys. Rev. B <u>56</u>, 14723 (1997).

Solution to the RCSJ Model

$$\frac{\Phi_0 C}{2\pi} \frac{\partial^2 \delta}{\partial t^2} + I_C \sin\delta + \frac{\Phi_0}{2\pi R_n} \frac{\partial \delta}{\partial t} = I_\omega \sin(\omega t)$$

Short Junction Approximation All Dimensions Perpendicular to the field $\langle \lambda_J \rangle$

$$(I_C R_n) \frac{\delta \delta}{2\pi} + \frac{\Phi_0}{2\pi} \frac{\delta \delta}{\partial t} = (I_\omega R_n) \sin(\omega t)$$

 $I_C R_n$ - Fitting Parameter $I_{\omega} R_n$ - ScalingFactor * Input RF Field Amplitude (a.u.)

$$\delta(t) \rightarrow V(t) \rightarrow V_{3\omega}$$

Example Solution to the RCSJ Model

RCSJ Fit to Bulk Nb Data

Junction Critical Current

Deduced Energy Gap Temperature Dependence

Assuming AB SIS Tunneling in the JJ

Other Sources of Nonlinear Response

RF Vortex Entry and Motion in the Superconductor

PHYSICAL REVIEW B 77, 104501 (2008)

Dynamics of vortex penetration, jumpwise instabilities, and nonlinear surface resistance of type-II superconductors in strong rf fields

A. Gurevich1 and G. Ciovati2

FIG. 2. Snapshots of an expanding vortex semiloop emerging from a surface defect (black dot). The quicker expansion of the loop

Normalized TDGL Equations

$$\eta \frac{\partial \Psi}{\partial t} = -\left(\frac{i}{\kappa}\vec{\nabla} + \kappa\vec{A}\right)^2 \Psi + (1 - T - |\Psi|^2)\Psi$$
$$\vec{\nabla} \times \vec{\nabla} \times \vec{A} = \underbrace{-\sigma \frac{\partial \vec{A}}{\partial t}}_{J_n} \underbrace{\frac{i}{2\kappa^2} (\Psi^*\vec{\nabla}\Psi - \Psi\vec{\nabla}\Psi^*) - |\Psi|^2 \vec{A}}_{J_s}$$
$$\kappa = \frac{\lambda(0)}{\xi(0)}; \quad \eta = \frac{\tau_{GL}}{\tau_0}; \qquad \vec{B} = \vec{\nabla} \times \vec{A}; \qquad \vec{E} = -\frac{\partial \vec{A}}{\partial t}; \qquad T = \text{Temperature};$$
$$|\Psi|^2 = \begin{cases} 1 - Superconducting State \\ 0 - Normal State \\ \text{Length measured in units of } \lambda(0) \end{cases}$$

Horizontal RF Dipole Above Superconductor

Currents shown as red arrows

0.1

TDGL Harmonic Response May Explain Onset of V_{3f} in Nb Films

Outline:

- 1. What is the issue?
- 2. Why is SRF material science needed?
- 3. How Magnetic Microwave Microscopy works?
- 4. What did we measure?
- 5. What is the origin of this data?

6. Where do we plan to go with this?

HOW

WHERE

WHAT

WHO

Summary

We validate the existence of weak-links on the surface of Nb
Magnetic Microwave Microscopy can be used to extract local
T_c and Effective BCS Gap at the weak-link

Future Work

- TDGL Simulations are being performed to study "pedestal" data on thin films
- **>**Raster Scanning over known defect while imaging onset field
- >Measurement of multilayer/single layer samples

fin

Periodicity of Nb Thin Film Harmonics

5th H.

Bulk Nb Data: Multiple Periodicity in Harmonic Response

V_{3f} vsZ setpoint Combined

V_{3f} vs X setpoint (Combined)

Superconducting Sphere in a Uniform Static Magnetic Field

Static Magnetic Field In and Around a Superconducting Sphere

"Hot" and "Cold" Comparison

(EBSD) Local misorientation maps for "hot" (left) and "cold" (right) regions. Green color corresponds to 2° mis-orientation, blue - 0°.

Optical profilometry 3-D images (850 μ m × 640 μ m) of the hot (left) and cold (right) samples.

A. Romanenk⁺, G. Eremeev, D. Meidlinger, H. Padamsee "Studies of the high field anomalous losses in small and large grain niobium cavities", Proceedings of SRF2007, Peking Univ., Beijing, China

 $I_{\omega}R_n(mV) = ScalingFactor * Input RF Field Amplitude (a.u.)$

Onset(mV) = ScalingFactor * Onset (a.u.) **Period**(mV) = ScalingFactor * Period (a.u.) Dip #1(mV) = ScalingFactor * Dip #1 (a.u.)

Dip# 0 Period

- 1) Taka Data at T
- 2) Determine Dip# 0 / Period
- 3) Find Matching $I_C R_n$

Getting Δ from Junction

SIS Junction Assumed:

$$I_C R_n = \frac{\pi \Delta}{2e} \tanh(\frac{\Delta}{2k_B T})$$
 Ambegaokar-Baratoff

Solve for Δ