

Ar-Nb ion energy distribution and thin film properties in HiPIMS with a positive voltage pulse

<u>Fabio AVINO¹</u>, A. Sublet¹, S. Calatroni², P. Costa Pinto¹, T. Richard¹, G. Rosaz¹, M. Taborelli¹, W. Vollenberg¹, A. Grudiev³, A. Lunt⁴.

¹ CERN, TE/VSC-SCC ² CERN, TE/VSC-VSM ³ CERN, BE/RF-LRF ⁴ CERN, EN/MME

08/10/2018

1

Outline

- Framework
- R&D simulations
- R&D experiments
- Next steps
- Conclusions

Outline

- Framework
- R&D simulations
- R&D experiments
- Next steps
- Conclusions

HL-LHC upgrade (by 2025) aim at increasing luminosity by a factor of 5. 16 CRAB cavities will be mounted around the two main experiments (CMS-ATLAS).

Why CRAB?

HL-LHC upgrade (by 2025) aim at increasing luminosity by a factor of 5.16 CRAB cavities will be mounted around the two main experiments (CMS-ATLAS).

Why CRAB?

HL-LHC upgrade (by 2025) aim at increasing luminosity by a factor of 5.16 CRAB cavities will be mounted around the two main experiments (CMS-ATLAS).

Why CRAB?

Crab cavity

HL-LHC upgrade (by 2025) aim at increasing luminosity by a factor of 5.16 CRAB cavities will be mounted around the two main experiments (CMS-ATLAS).

The CRAB cavity R&D

1st bulk Nb CRAB cavity for HL-LHC completed and under test in SPS

The CRAB cavity R&D

1st bulk Nb CRAB cavity for HL-LHC completed and under test in SPS

R&D in the FCC framework for alternative Nb/Cu WOW CRAB cavities 1st Cu WOW CRAB cavity prototype to be Nb coated

The CRAB Cu cavity

CHALLENGES:

- Superconducting cavities require high purity and defectfree coatings
- 2. Complex shape: avoid shadowing / uniform growth

The CRAB Cu cavity

CHALLENGES:

- Superconducting cavities require high purity and defectfree coatings
- 2. Complex shape: avoid shadowing / uniform growth

Cylindrical sputtering source

Cylindrical sputtering source

Coating surfaces at different:

distances (50 – 150 mm)

Cylindrical sputtering source

Coating surfaces at different:

distances (50 – 150 mm)

incident angles (0 – 90 °)

Cylindrical sputtering source

Coating surfaces at different:

distances (50 – 150 mm)

incident angles (0 – 90 °)

Cylindrical sputtering source

Coating surfaces at different:

distances (50 – 150 mm)

incident angles (0 – 90 °)

1. Basic tests in a R&D experimental setup:

- Basic plasma physics in HiPIMS
- Optimization of HiPIMS parameters

1. Basic tests in a R&D experimental setup:

- Basic plasma physics in HiPIMS
- Optimization of HiPIMS parameters

2. Coating of samples reproducing cavity shape

- Coating of copper strips with the CRAB cavity shape
- Parallel implementation of plasma diagnostics
- New sputtering source development

1. Basic tests in a R&D experimental setup:

- Basic plasma physics in HiPIMS
- Optimization of HiPIMS parameters

2. Coating of samples reproducing cavity shape

- Coating of copper strips with the CRAB cavity shape
- Parallel implementation of plasma diagnostics
- New sputtering source development

3. Coating of the first scale-1 cavity prototype

1. Basic tests in a R&D experimental setup:

- Basic plasma physics in HiPIMS
- Optimization of HiPIMS parameters

2. Coating of samples reproducing cavity shape

- Coating of copper strips with the CRAB cavity shape
- Parallel implementation of plasma diagnostics
- New sputtering source development

3. Coating of the first scale-1 cavity prototype

Outline

- Framework
- R&D simulations
- R&D experiments
- Next steps
- Conclusions

Plasma simulation of 60 mm long cylindrical cathode

Experiment P = 5.10^{-3} mbar / Ar / <u>1kW</u> / DCMS

Side view of the cylndrical cathode (permanent magnet inside)

Plasma simulation of 60 mm long cylindrical cathode

Plasma simulation of 60 mm long cylindrical cathode

Transport simulation and thickness profile

		-
	CAN D-	
	Niobium thickness [um]	
1	5.5	10

 \rightarrow Nb thickness profile, scaled to an equivalent 15' coating at 1kW/cathode

Transport simulation and thickness profile

 \rightarrow Nb thickness profile, scaled to an equivalent 15' coating at 1kW/cathode

Transport simulation and thickness profile

→ Nb thickness profile, scaled to an equivalent 15' coating at 1kW/cathode
→ Uniformity copes with peak power density position → layer morphology?

Could HiPIMS ?

Outline

- Framework
- R&D simulations
- R&D experiments
- Next steps
- Conclusions

R&D experimental setup

• 43 cm high DN150 vacuum chamber

R&D experimental setup

- 43 cm high DN150 vacuum chamber
- 2" magnetron source, 15° tilted

R&D experimental setup

- 43 cm high DN150 vacuum chamber
- 2" magnetron source, 15° tilted
- Mass and energy analyser (MEA): time integrated + time resolved measurements of ion fluxes

Samples and holder

View from bottom of the MEA entrance orifice

Samples and holder

View from bottom with sample holder

Samples and holder

HiPIMS configurations

• Duty cycle : 1 kHz

CERI

• Main pulse (MP) : 30 μs

HiPIMS configurations

- Duty cycle : 1 kHz
- Main pulse (MP) : 30 μs
- Delay (D) : 4 μs

CERI

HiPIMS configurations

- Duty cycle : 1 kHz
- Main pulse (MP) : 30 μs
- Delay (**D**) : 4 μs
- PP duration (**PP**) : 20 250 μs

Time-integrated IEDF

By using the MEA

Time-integrated IEDF

By using the MEA

Evidence of a dominant high energy ion population!

FIB on DCMS coatings

Experimental parameters:

- Argon pressure : 8x10⁻³ mbar
- Niobium target
- Power : 250 W (1.5 hours)

DCMS with grounded substrate

DCMS with -50V bias on substrate

90°

0°

Biased-like effect with a positive pulse! 90° sample gets densified with 200 μs positive pulse at +50V

16

Outline

- Framework
- R&D simulations
- R&D experiments
- Next steps
- Conclusions

1. Basic tests in a R&D experimental setup:

- Basic plasma physics in HiPIMS
- Optimization of HiPIMS parameters

2. Coating of samples reproducing cavity shape

- Coating of copper strips with the CRAB cavity shape
- Parallel implementation of plasma diagnostics
- New sputtering source development

3. Coating of the first scale-1 cavity prototype

1. Basic tests in a R&D experimental setup:

- Basic plasma physics in HiPIMS
- Optimization of HiPIMS parameters

2. Coating of samples reproducing cavity shape

- Coating of copper strips with the CRAB cavity shape
- Parallel implementation of plasma diagnostics
- New sputtering source development

3. Coating of the first scale-1 cavity prototype

Validation of coating setup with mockup samples

→ Time- and spatially-resolved (substrate-cathode distance) IEDF measurements

- → Deposition on samples reproducing the CRAB cavity shape
- → Assess layer uniformity and SC properties with different coating configurations

Validation of coating setup with mockup samples

→ Time- and spatially-resolved (substrate-cathode distance) IEDF measurements

- → Deposition on samples reproducing the CRAB cavity shape
- → Assess layer uniformity and SC properties with different coating configurations

Conclusions

• First indication of coating uniformity with simulations in DCMS

 Measured mass-, energy-resolved ion fluxes (Ar⁺, Nb⁺) Evidence of a dominant high energy ion population with positive pulse

Conclusions

• First indication of coating uniformity with simulations in DCMS

- Measured mass-, energy-resolved ion fluxes (Ar⁺, Nb⁺) Evidence of a dominant high energy ion population with positive pulse
- Performed sample coatings in different HiPIMS configurations: <u>FIB analysis indicates a biased-like effect with a positive pulse!</u> 90° sample gets densified with 200 μs, +50V positive pulse

Backup Slides

Process	Sample	XRF [μm]	FIB [µm]	Dr [nm/min]
DCMS (1.5 h / 250W)		1.5	1.6	17.8
		0.5	1	11.1
DCMC and $EO(/hisson complex (1.5h / 250)M)$	0°	1.9	1.93	21.4
DCMS and -50V bias on samples (1.5n / 250W)		0.6	1.3	5.4
	0°	2.1	2.1	8.8
HIPINIS 30 µs pulse (4n / 250W)		0.7	1.3	5.4
HEPINAC 20 = relation and EQ V bios on complete (4b / 2EQM)	0°	2	2	8.3
HIPIMS 30 μ s pulse and -50 V bias on samples (4h / 250W)		0.7	0.8	3.3
LIDING 28 we make and LEOV / 200 we reverse kick (4h / 2EOM)	0°	2	2.2	9.2
minimis so μ s pulse allu +50% / 200 μ s reverse kick (411 / 250%)		0.67	0.8	3.3

Biased-like effect with a positive pulse! 90° sample gets densified with 200 μs, +100V positive pulse

30us MP – 4us D – 200us RK 100V

How to measure time-resolved ion fluxes

Time-resolved Ar⁺ fluxes

