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The CRAB cavity: what for?

Why CRAB?

HL-LHC upgrade (by 2025) aim at increasing luminosity by a factor of 5.

16 CRAB cavities will be mounted around the two main experiments (CMS-ATLAS).
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The CRAB cavity R&D
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1st bulk Nb CRAB cavity for HL-LHC completed and under test in SPS
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The CRAB cavity R&D
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1.4 m

1st bulk Nb CRAB cavity for HL-LHC completed and under test in SPS

R&D in the FCC framework for alternative Nb/Cu WOW CRAB cavities

290 kg

1st Cu WOW CRAB cavity prototype to be Nb coated 



The CRAB Cu cavity

CHALLENGES:

1. Superconducting cavities 

require high purity and defect-

free coatings

2. Complex shape: avoid 

shadowing / uniform growth
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Total power loss ~ 60W

@ Q0 = 4x108 / 3 MV deflection
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CRAB cavity coating challenge
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1. Basic tests in a R&D experimental setup:

• Basic plasma physics in HiPIMS

• Optimization of HiPIMS parameters
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Side view of the cylndrical cathode 

(permanent magnet inside)
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Plasma simulation of 60 mm long 

cylindrical cathode

Experiment

P = 5.10-3 mbar / 
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Plasma simulation of 60 mm long 

cylindrical cathode

Plasma simulation

P = 5.10-3 mbar / Ar

/ 10W / DCMS 
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Output: Nb
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Side view of the cylndrical cathode 

(permanent magnet inside)
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Plasma simulation of 60 mm long 

cylindrical cathode

Plasma simulation

P = 5.10-3 mbar / Ar

/ 10W / DCMS 

N

S

Experiment

P = 5.10-3 mbar / 

Ar / 1kW / DCMS 

Output: Nb

sputtering profile
x5 cathodes in WOW

6
0

 m
m

c
a

th
o

d
e



14

Transport simulation and thickness 

profile

 Nb thickness profile, scaled to an equivalent 15’ coating at 1kW/cathode
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Transport simulation and thickness 

profile

 Nb thickness profile, scaled to an equivalent 15’ coating at 1kW/cathode

 Uniformity copes with peak power density position  layer morphology?

Could HiPIMS ?
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R&D experimental setup
• 43 cm high DN150 vacuum chamber 
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R&D experimental setup
• 43 cm high DN150 vacuum chamber 

• 2’’ magnetron source, 15° tilted

• Mass and energy analyser (MEA):

time integrated + time resolved measurements of ion fluxes
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Samples and holder
View from bottom of the MEA entrance orifice
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Samples and holder
View from bottom with sample holder
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15 mm

5 mm

FIB cut

Samples and holder

20 mm

10 mm

View from bottom with sample holder



HiPIMS configurations
• Duty cycle : 1 kHz

• Main pulse (MP) : 30 ms

-550 V

~20 A

+50 V

MP
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HiPIMS configurations
• Duty cycle : 1 kHz

• Main pulse (MP) : 30 ms

• Delay (D) : 4 ms 

• PP duration (PP) : 20 – 250 ms  

-550 V

~20 A

+50 V

PPMP

13

D

+50V PP

no PP



Time-integrated IEDF
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By using the MEA
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Time-integrated IEDF

14

By using the MEA

Evidence of a dominant high energy ion population!

PP

PP
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FIB on DCMS coatings
Experimental parameters:

• Argon pressure : 8x10-3 mbar

• Niobium target

• Power : 250 W (1.5 hours)

DCMS with grounded substrate DCMS with -50V bias on substrate

90°

0°
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FIB on HiPIMS coatings

90°
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grounded substrate
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FIB on HiPIMS coatings

90°

0°

a) HiPIMS, no PP,

grounded substrate
b) HiPIMS, no PP,

-50 V bias on substrate

c) HiPIMS, +50 V PP,

grounded substrate

Biased-like effect with a positive pulse! 

90° sample gets densified with 200 ms positive pulse at +50V 
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Validation of coating setup with 

mockup samples

Mass & Energy 

Analyser

200 mm stroke

bellow

Sputtering 

source

 Time- and spatially-resolved (substrate-cathode distance) IEDF measurements 

 Deposition on samples reproducing the CRAB cavity shape

 Assess layer uniformity and SC properties with different coating configurations
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Validation of coating setup with 

mockup samples

Mass & Energy 

Analyser

200 mm stroke

bellow

Sputtering 

source

WOW-mockup

samples

 Time- and spatially-resolved (substrate-cathode distance) IEDF measurements 

 Deposition on samples reproducing the CRAB cavity shape

 Assess layer uniformity and SC properties with different coating configurations
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Conclusions

• First indication of coating uniformity with simulations in DCMS

• Measured mass-, energy-resolved ion fluxes (Ar+, Nb+)

Evidence of a dominant high energy ion population with positive pulse
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Conclusions

• First indication of coating uniformity with simulations in DCMS

• Measured mass-, energy-resolved ion fluxes (Ar+, Nb+)

Evidence of a dominant high energy ion population with positive pulse

• Performed sample coatings in different HiPIMS configurations:

FIB analysis indicates a biased-like effect with a positive pulse! 

90° sample gets densified with 200 ms, +50V positive pulse



Backup Slides



Process Sample XRF [mm] FIB [mm] Dr [nm/min]

DCMS (1.5 h / 250W)
0° 1.5 1.6 17.8

90° 0.5 1 11.1

DCMS and -50V bias on samples (1.5h / 250W)
0° 1.9 1.93 21.4

90° 0.6 1.3 5.4

HiPIMS 30 ms pulse (4h / 250W)
0° 2.1 2.1 8.8

90° 0.7 1.3 5.4

HiPIMS 30 ms pulse and -50 V bias on samples (4h / 250W)
0° 2 2 8.3

90° 0.7 0.8 3.3

HiPIMS 38 ms pulse and +50V / 200 ms reverse kick  (4h / 250W)
0° 2 2.2 9.2

90° 0.67 0.8 3.3



FIB on HiPIMS coatings

90°

0°

a) HiPIMS

(grounded substrate)
b) HiPIMS with -50 V bias 

on substrate

c) HiPIMS with +100 V 

positive pulse

(grounded substrate)
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FIB on HiPIMS coatings

90°

0°

a) HiPIMS

(grounded substrate)
b) HiPIMS with -50 V bias 

on substrate

c) HiPIMS with +100 V 

positive pulse

(grounded substrate)

Biased-like effect with a positive pulse! 

90° sample gets densified with 200 ms, +100V positive pulse



30us MP – 4us D – 200us RK 100V

10/4/2018



How to measure time-resolved ion fluxes

CP400

Ion counter

ECL-TTL

converter

PPM422

acquisition

Multi-channel 

Scaler MCS4

Time-Integrated 

Measurements

Time-resolved 

Measurements:

• 50ns dwell time



Time-resolved Ar+ fluxes

30 ms MP 

30 ms MP – 25 ms D – 35 ms RK 


