

On application of photothermostimulated exoelecron emission for characterisation of Nb films, deposited on copper

A. Katashev, C. Pira, A. Sublet, M. Vogel, R. Valizadeh

8-10 October 2018 INFN - Laboratori Nazionali di Legnaro

Excelectron emission

- J. Mclenann, 1902. "On a Kind of Radioactivity Imparted to Certain Salts by Cathode Rays"; The London Edinburgh and Dublin Philosophical and Journal of Science Series 6, vol. 3 no. 14p 195 - 203.
- M. Tanaka, 1935. "After Effect of Aluminum Bombarded by Electrons"; Physical Review, vol. 48 p916.
- J. Kramer, 1949. "Spitzenzahler and Zahlrohr bei Metallographischen ober Flachen-unter Suchungen";, Zeitschrift fur Physik, vol. 125 pp739 - 75

Emission of the defect surface

Thermoionic emission

3

Thermostimulated Excelectron emission

Temperature 4

Photoelectron emission

Photoelectron emission

I_e ~ A (h_ν - φ)^m

Optically stimulated exoemission

I_e~A(t) (h_ν - φ)^m

7

Photo-termostimulated exoemission

Photo-termostimulated exoemission

Dual photostimulated emission

Electron escape depth

Exoelectron spectrometer

Photoemission: applications

Detection of lattice distortion

©[A. Balodis, Yu. Dekhtyar, A. Kunitzin, G. Markelova, V. Noskov]

In situ monitoring of the etching process

©[A. Balodis, Yu. Dekhtyar, A. Kunitzin, G. Markelova, V. Noskov]

Exoemission of abraded Al

Exoemission: Imperfections

©[Yu. Dekhtyar, V. Noskov]

Exoemission: Thin films

©[Yu. Dekhtyar, V. Noskov, G. Rosenman (Israel), et.al.]

Exoemission: phase transitions

©[Yu. Dekhtyar, A. Katashev, V. Fridkin (Russia), et.al.] 2004 – 2007. INTAS projekts 03-51-3967 "Ferroelectricity on molecular level"

Application for Nb on Cu

 Motivation: explore possibility to apply exoelectron emission technique for early prediction of the Nb coating quality

Effect of the substrate preparation

	Deposition					
Surface preparation technology	INFN	Universitat Siegen	ASTeC			
SUBU CERN	C10	C1	Under processing			
SUBU INFN	L20	L1	Under processing			
EP INFN	L21	L10	Under processing			
EP+SUBU INFN	L16	L23	Under processing			
TUMBLING	L8	L9	Under processing			

(Yesterday talk by Cristian Pira, 15.40)

Typical spectra of Nb on Cu samples (INFN batch)

PTSE

TSEE

Typical spectra of Nb on Cu samples (INFN batch)

PTSE

TSEE

Peaks deconvolution

Randal-Wilkins expression

$$\sim -\frac{dN}{dT} = A \cdot e^{-\frac{E}{kT}} \cdot N(T)$$

Spec.		PT	TSEE			
	Low-temperature peak		High-temperature		Low-T	High-T
			peak		peak	peak
	T _{max} , ⁰C	E, eV	T _{max} , ⁰C	E, eV	T _{max} , ⁰C	T _{max} , ⁰C
C10	320	0.67	450	1.51	310	450
L8	362	0.58	> 500	1.38	320	425
L16	375	1.42	460	2.54	-	470
L20	370	0.68	490	1.61	425	490
L21	342	0.65	480	0.95	347	500

Ι

Activation energies for low temperature and high temperature annealing for different CU substrate preparation technologies

Correlation roughnessactivation energy

Effect of the laser processing:

Laser processing by RTU Institute of Technical Physics, prof. A. Medvid (Yesterday talk, 15.55)

PTSE

TSEE

Conclusion:

- Spectra of the exoelectron emission of the Nb deposited on Cu and corresponding activation energies indicates that structure / nature of imperfections in the Nb film is changed due to different pre- processing of the Cu substrate.
- TSE/PTSE activation energies does not correlate with surface roughness.
- The position of maxima of the TSE/PTSE spectra of laser processed Nb suggests that the nature of defects, induced by laser treatment, differs from defects, existed in the film after deposition.
- The interpretation of the results required additional research to understand the nature of the introduced defects and physics of TSE/PTSE in Nb and to evaluate prognostic value of the method for the early/ *in situ* prediction of Nb film quality.

Paldies ! (Thank you!)

The research is supported by EU ARIES collaboration H2020 Research and Innovation Programme under Grant Agreement no. 730871.