

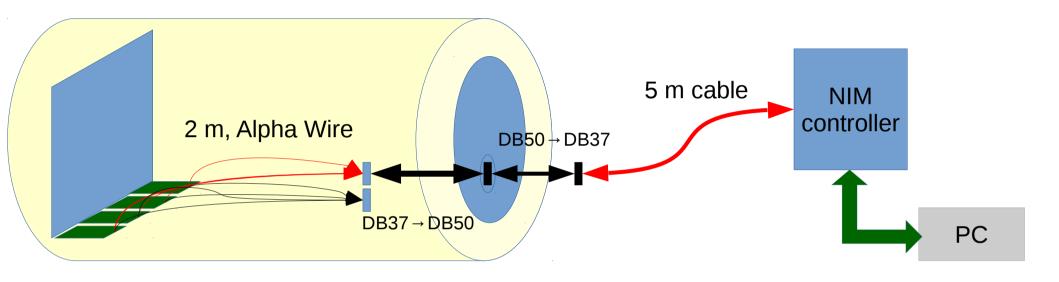
Power consumption and thermal dissipation of veto FEE electronics

Fabio Ferrarotto, Venelin Kozhuharov

for the charged particle detectors working group

Sofia University*, University of Rome "La Sapienza, LNF–INFN 27.04.2018





Will the FEE burn in vacuum?

- Goal: test the thermal dissipation strategy
- Steps:
 - Electrical setup preparation
 - Temperature monitoring
 - Mechanical preparation
 - > Outcome
 - Power balance

Electrical setup

- DB37M → DB50F and DB37F → DB50F prepared, each 50 cm long
 - Pinning on the DB50 side chosen according to "common sense"
 - Using flat cable with 10 twisted pairs (4 x SDA, 4xSCL, 1 HV, 1 LV)
 - Cable tested and verified
- Additional extension cable controller → DB37 → DB50 patch
 - 5m, flat cable, tested and verified
 - Verification = possibility to control and monitor the FEEs and SiPMs

Temperature monitoring

PADME-NIM page server

APD sensor's cards

This page reports the status and controls individual channels of the APD sensor cards. Refresh counter: 21 (auto refresh \bigcirc)

Board status: Ok

HV enable

b ch17

	- 16							
Channel	el Enable			Enab'd	Volt	Iapd	Temp Status	
						[uA]	[C]	
ch1	•	0.0	V	0	10.7	0.0	25.6	Ok
ch2	~	0.0	V	0	10.0	0.0	25.9	Ok
ch3	~	0.0	٧	9	10.0	0.0	26.6	Ok
ch4	\checkmark	0.0	٧	9	11.7	0.0	25.9	Ok
ch5	\checkmark	0.0	v	0	13.1	0.0	25.4	Ok
ch6	~	0.0	V	9	8.8	0.0	25.5	Ok
▶ ch7	$\overline{\mathbf{v}}$	0.0	٧	9	7.7	0.0	25.3	Ok
ch8	~	0.0	V	9	9.0	0.0	25.6	Ok
ch9	\checkmark	0.0	V	9	9.9	0.0	25.5	Ok
▶ ch10	\checkmark	0.0	V	9	10.2	0.0	27.7	Ok
▶ ch11	~	0.0	٧	9	10.5	0.0	25.2	Ok
▶ ch12	\checkmark	0.0	V	9	10.1	0.0	25.9	Ok
▶ ch13	\checkmark	0.0	V		11.7	0.0	25.6	Ok
▶ ch14	~	0.0	V	9	11.5	0.0	26.4	Ok
▶ ch15	~	0.0	٧	9	11.2	0.0	25.6	Ok
▶ ch16	\checkmark	0.0	V	9	9.4	0.0	25.3	Ok
10 0000000	_			_				

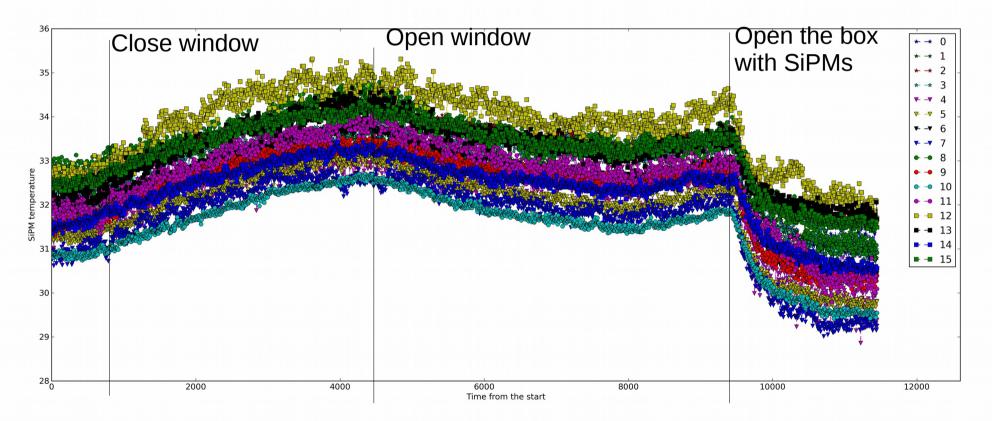
- Board monitoring web interface exists
- Direct Ethernet communication with the NIM module
 - Convenient and transparent
 - But for few channels, for more channels it becomes a burden

Following the links in the HTML...

```
ad.htm
```

<u>ad.js</u>

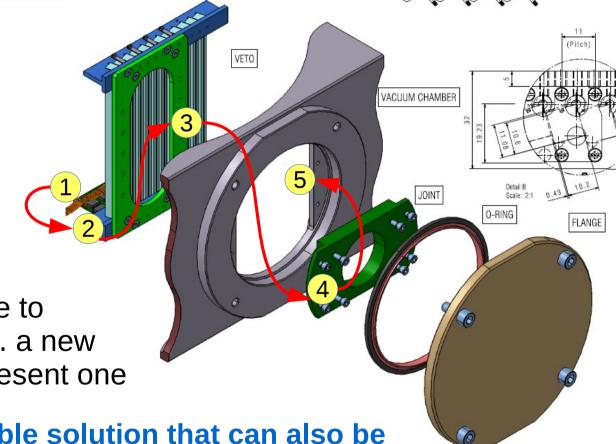
```
var formUpdate = new periodicObj("brdusr.cgx", 2000, brdusr_htm_update);
```

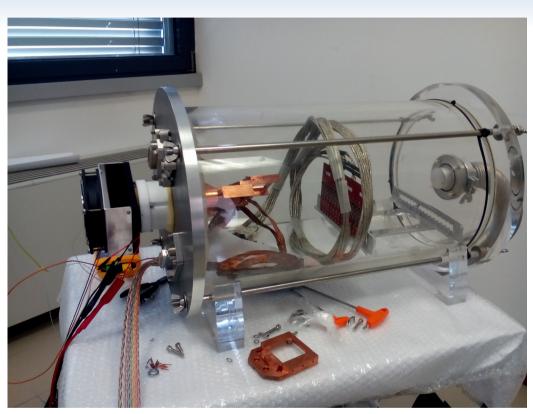

brdusr.cgx

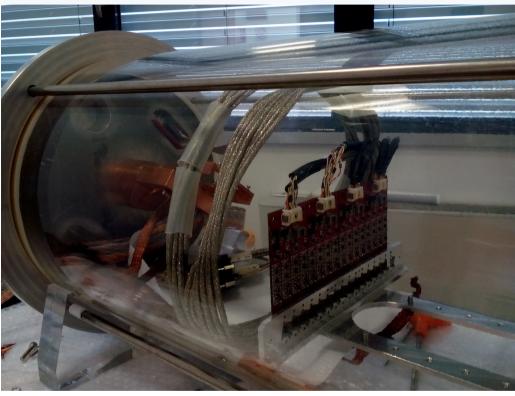
```
[{"id":"","ch":1,"cardSts":1,"hvReq":55.0,"hvLvl":54.7,"cardTemp":33.08,"apdCurrent":0,"apdTemp":31.0,"cardSsupplyV":4975.2,"er
rSts":0,"errCnt":0,"lastErr":"0k"},{"id":"","ch":2,"cardSts":1,"hvReq":55.0,"hvLvl":55.0,"cardTemp":31.86,"apdCurrent":0,"apdTe
mp":31.0,"cardSsupplyV":4973.2,"errSts":0,"errCnt":0,"lastErr":"0k"},{"id":"","ch":3,"cardSts":1,"hvReq":55.0,"hvLvl":55.0,"car
dTemp":31.14,"apdCurrent":0,"apdTemp":31.5,"cardSsupplyV":4973.1,"errSts":0,"errCnt":0,"lastErr":"0k"},{"id":"","ch":4,"cardSts
":1,"hvReq":55.0,"hvLvl":55.0,"cardTemp":31.85,"apdCurrent":0,"apdTemp":31.6,"cardSsupplyV":4974.7,"errSts":0,"errCnt":0,"lastE
```

- The CPU on the board runs an html and a JavaScript servers
 - The update on the displayed form is through JS functions
- The data is taken and parsed from three files: brdcfg.cgx brddat.cgx brdusr.cgx
 - All they are respecting the JSON format!

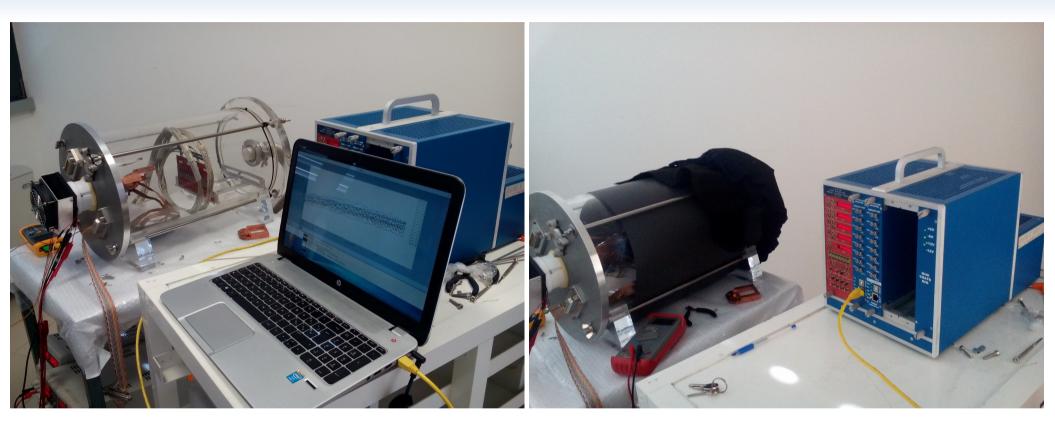
Simple monitor


- A python script with JSON parser, container and a exploiting basic plotting
- Tested for long term in office environment

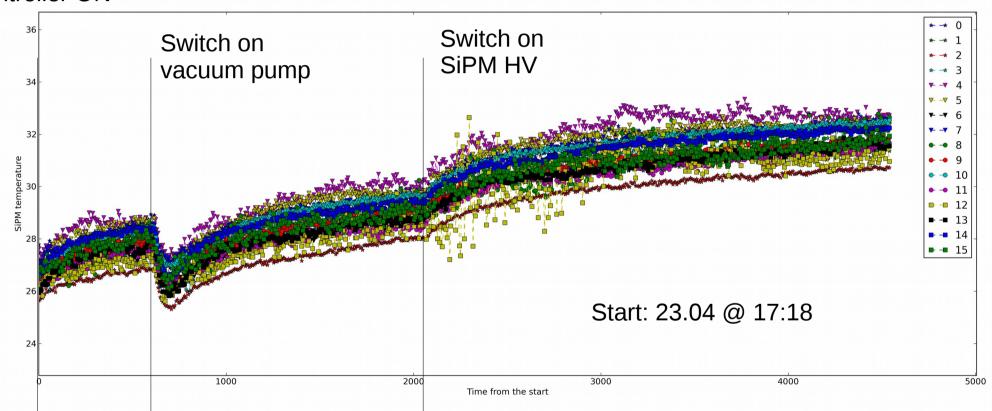

- The temperature measurement seem to follow the natural expectations
 - So it seems a reliable indication for the Tcard


Installation

- Base heat transfer solution
 - 1. FEE cards →
 - 2. aluminium frame →
 - 3. enclosing back panel →
 - 4. supporting panel →
 - 5. vacuum chamber
- A realistic test should assume to include all components ... i.e. a new flange or machining of the present one
- Can we make another possible solution that can also be realized in test environment?
 - Use only braided copper cable for heat transfer from 3 directly to 5
 - Can be implemented both at the experiment and at a test setup and can also be the worst case scenario test


Installation

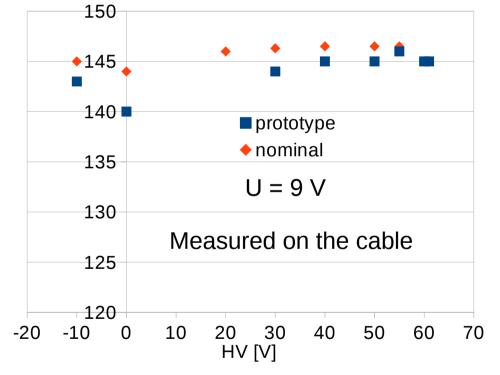
- Two braided copper wires, ~1 cm wide, attached to the Mimosa copper support
- Signal/control cables not touching the cards
- The only additional heat transfer is through the wires and the plastic chamber itself
 - The contact between the frame and the chamber is negligible
 - The fan was used occasionally, the Peltier never


Setup

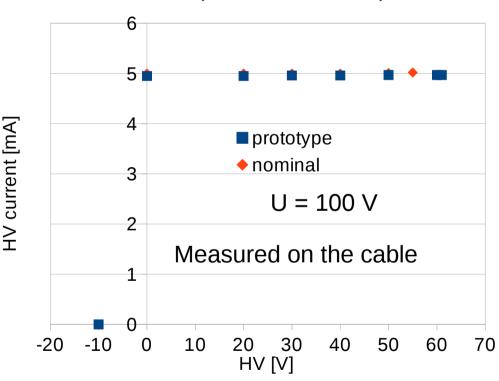
- The chamber got covered by Tedlar and black cloth to decrease the light on the SiPM
 - However no special attention was made to keep them in full darkness
 - A lower HV (close but below the breakdown voltage) leads to sizeable signal amplitudes and a load to the amplifiers

Temperature trend

Controller ON

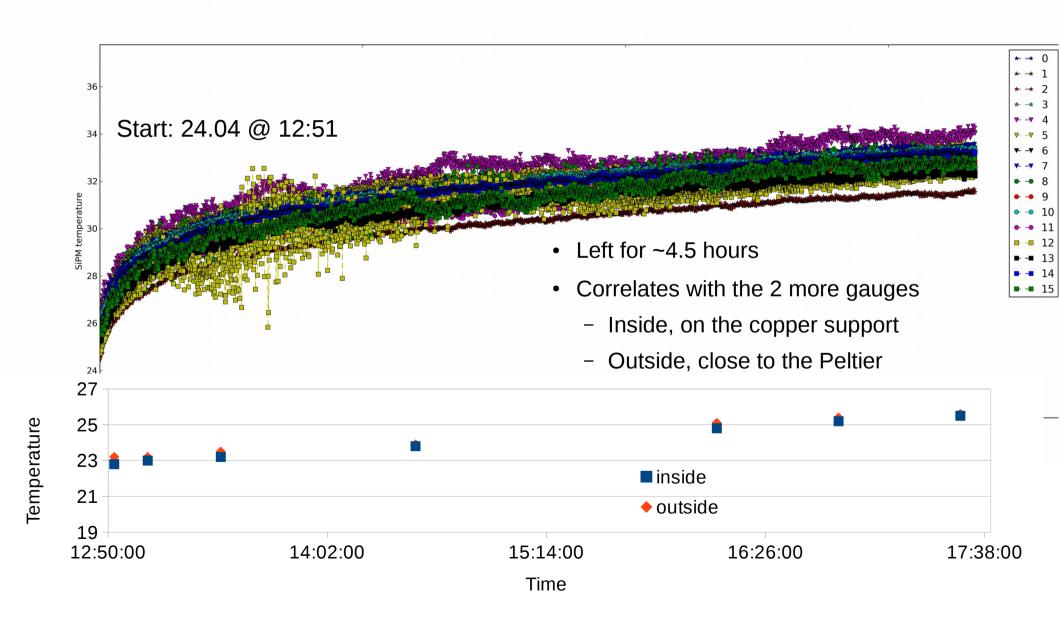

- The system operated for > 1 h without any intervention necessary
- The temperature seem to stabilize after initial increase
 - Heating and dissipation tend to equalize
 - The maximal temperature was about 32 33 C

FEE power characteristics

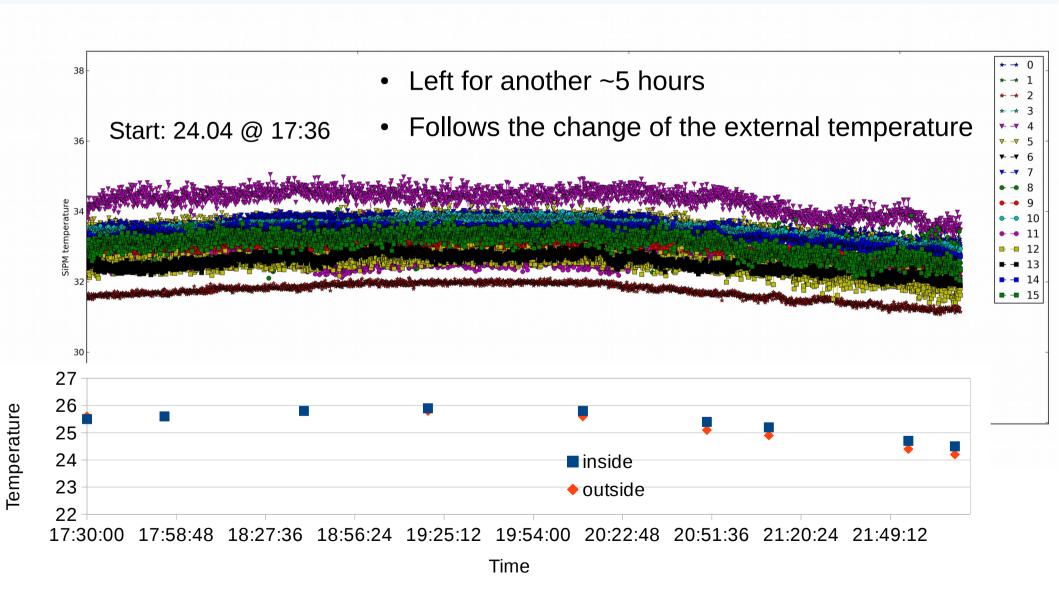

Controller ON:

-V current [mA]

- 9V OK (measured 9.0 V),
- HV 0 V (measured ~5-6 V)



- HV ON:
 - 9 V OK
 - 100 V OK (measured 99.7 V)



- The LV current is stable and does not exceed 150 mA @ 9 V (< 10 mA/channel !!!)
 - Slight increase with the increase of the HV, amplifiers consume more current due to increase of rate
- Current on the HV line (when HV is ON) is fixed to ~312 mA/channel (300 mA by specification)
- Power consumption: ~1.3 W (LV) + 0.5 W (HV) ~ 1.8 W for 16 channels

Educated thermal test

Educated thermal test

Vetoes DCS

Pure "C" module developed to handle the NIM controller values

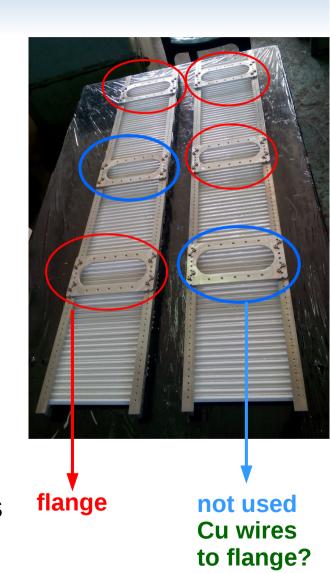
```
From brdusr.cgx
js length = 2584
# of TOKENS = 382
# of channels = 16
```

id d	chan	statu	ıs hvset	hvlvl	cardT	sipml	sipmT	errSt	erro	ent lasterr
0	1	1	62.00	61.60	33.58	0.00	31.20	0	0	0
1	2	1	62.00	62.10	32.34	0.00	31.40	0	0	0
2	3	1	62.00	62.00	31.47	0.00	31.90	0	0	0
3	4	1	62.00	61.90	32.86	0.00	31.90	0	0	0
4	5	1	61.20	61.00	33.70	0.00	31.10	0	0	0
5	6	1	62.00	62.10	33.31	0.00	31.90	0	0	0
6	7	1	62.00	62.00	32.32	0.00	31.90	0	0	0
7	8	1	62.00	61.60	33.35	0.00	32.00	0	0	0
8	9	1	62.00	62.80	33.05	0.00	30.70	0	0	0
9	10	1	62.00	61.90	32.64	0.00	31.70	0	0	0
10	11	1	62.00	61.90	33.22	0.00	31.50	0	0	0
11	12	1	62.00	62.30	32.19	0.00	31.80	0	0	0
12	13	1	62.00	62.20	32.20	0.00	31.50	0	0	0
13	14	1	62.00	62.20	32.33	0.00	31.10	0	0	0
14	15	1	62.00	62.50	33.02	0.00	31.50	0	0	0
15	16	1	62.00	62.10	32.86	0.00	31.50	0	0	0

Put into operation readout from cgx of NIM module for DCS with C module

using proper variables to be put into mySQL DB

For the moment testing on raspberry connected to NIM module, then to DCS


Final version: directly from DCS main

NOTE: this is just to read, not yet to set the values

Work in progress...

Conclusion

- The total power to be dissipated is about
 12 W per a whole veto station
- The power dissipation for the HEPveto is ~ 2 W
- An effective thermal dissipation mechanism can be realized just with 2 braided copper wires
 - 6 wires per veto, exploiting also the free backplanes, screw threads already there
- The cards temperature is ~ 8 degrees higher than the outside temperature
 - Expecting < 30°C if the chamber is @ 20°C
- A python monitoring script to follow the FEE status
- Dedicated DCS module developed in C

