Exercise: cross section evaluation with MC data

Evaluate the differential cross section wrt kinetic energy $d\sigma/dk$ of a particular fragment f using only MC data

$$\frac{d\sigma(f)}{dk} = \frac{N_{real}(f)}{N_{Total \, events} \cdot \epsilon_{MC}(f)}$$

- □ **N**_{real}(**f**) number of fragments selected from real data
- **ε_{MC}(f)** selection efficiency of the fragment "f"
- □ *N*_{total events} number of total generated events

MC (¹⁶O, 200 MeV, V14.1.1) divided in 2 samples:

- □ If (number_of_events == even) → Real data
- □ If (number_of_events == odd) \rightarrow MC

MC Efficiency

N_{GEN}(**f**): kinetic energy distribution (inverse kinematic) of the fragment

"f" without cuts (type of fragment identified by the MC truth)

N_{RECO}(f): is the subsample of **N**_{GEN}(f) of the reconstructed fragment "f":

□ fragments that deposit energy in all detector (geom acceptance)

□ X^2 of the ALM method < 5

Fragment "f"

INPUT RESOLUTIONS:

- $\Box \quad \text{Momentum} \rightarrow 5\%$
- Kinetic Energy (Calo) \rightarrow 1.5%
- **Tof** : [100:150] ps depending on Z
- **ΔE (scint): [3:10]% depending on energy released**

Kinetic energy derived from output parameters of ALM Fit

Generated and Reconstructed kinetic Energy: direct kinematics

All isotopes added in charges

Problem: the reconstructed energy is under-estimated (neutrons?)

for heavy fragments

Generated and Reconstructed kinetic Energy: inverse kinematics

All isotopes added in charges

Generated energy

Reconstructed energy: out of fit ALM with $\chi^2 < 5$

Problem: the reconstructed energy is over-estimated (neutrons?)

Efficiency wrt kinetic Energy: inverse kinematics

All isotopes added in charges

Correct distributions for light fragments, not for heavy ones

«Real Data»

Fragments reconstructed $N_{real}(f)$ without to know truth information

 $N_{REAL}(f)$: reconstructed fragment (same cuts as $N_{reco}(f)$):

- fragments that deposit energy in all detector (geom acceptance)
- X^2 of the ALM method < 5

Reconstructed from ALL events,

possible mis-identification

Reconstructed from fragments

of a determined type

- At the moment all isotopes added
- Charge determined by the dE/dx on SCN

«Real Data»

Obvioulsy these plots are affected by two possible problems:

- Not correct kinetic energy estimation
- Possible wrong charge identification

Cross Section wrt kinetic energy (inverse kinematics)

To have a reliable result \rightarrow better kinetic energy reconstruction

Conclusion

The machinery for the cross section evaluation is ready in a private code \rightarrow include it in SHOE

Find a method to take care of the systematic kinetic energy underestimation

Try to estimate the mass with higher resolution so to have the cross section for each isotope

General Paper

Goal: paper (JINST?) on FOOT detector Each sub-detector will be written by the responsible institute

Internal editors:

- Introduction-Motivation:
- □ Start Counter:
- Beam Monitor:
- Target:
- Vertex and Inner Tracker:
- MSD:
- Magnet:
- □ SCN:
- CAL:
- **EMULSION** chamber:
- DAQ:
- Simulation
- Performance

Make a homogeneous text: Battistoni, Patera, EB

Battistoni, Durante, Patera, + EB Patera, Sarti, Sciubba Battistoni, Tommasino

Spiriti Ambrosi, Servoli

Morrocchi Cerello Lauria, Montesi Biondi

Spighi

Possible general scheme

The FOOT detector

- □ Introduction
- □ Apparatus
- Upstream and target Region
- □ Tracking system
- Particle Identification
- □ Trigger and data acquisition system
- Emulsion Chamber setup
- Performances
- Conclusions

More detailed scheme, 1

The FOOT detector

□ Introduction

- from "Introduction" and "Motivation and research Program" of CDR

□ Apparatus

- Requirements in terms of the resolution to be achieved
- Electronic setup
 - Upstream and target region
 - Tracking system
 - Particle Identification
 - Trigger and data acquisition system
- Emulsion chamber setup

More detailed scheme, 2

Upstream and target Region

- Start Counter
- Beam monitor
- Target

□ Tracking system

- magnetic system
- vertex
- inner tracker
- micro strip detector

Particle Identification

- Scintillator
- Calorimeter

More detailed scheme, 3

- Trigger and data acquisition system
- Emulsion Chamber setup
- Performances
 - Electronic Setup
 - Emulsion Chamber
- Conclusions

Backup slides

Types of Fragments present on simulated data

Input Resolution

INPUT RESOLUTIONS:

- □ Momentum \rightarrow 5%
- □ Kinetic Energy (Calo) \rightarrow 1.5%
- □ Tof : [100:150] ps depending on Z
- **Δ**E (scint): [3:10]% depending on energy released

