Update on simulations for scintillator bars

Outline

- Introduction
- Setup
- Results
- Plans

Introduction

- Goal: understand better how various parameters have influence on fragmentation and scintillator energy resolution
 - Z of particle
 - Thickness of scintillator
 - Energy of passing particle
- Comparison with experimental results (not included today)
- Today: results of first studies (work in progress!!)

FLUKA simulations

- Introduced to FOOT software related to FLUKA by Giuseppe Version: FOOT V13.1.1
- 5 steps (mostly automized to simulate different Z, A, E, z, scint thickness, etc ...):
 - 1. Creation of FLUKA input file
 - 2. Run FLUKA simulations (already available):
 - 3. Convert FLUKA txt output \rightarrow Rootfiles (already available)
 - 4. Creation of analysis histogram file ("AnaFOOT", added a few lines up to now)
 - 5. Plots/analysis (my analysis)

Fragmentation and energy resolution vs Z

How does Z influence the fragmentation probability?

- 1M particles shot **directly on scintillator** with fixed energy and 8 different Z-values
- No detector effects included for the moment!

Z	Α	E [GeV]	SCN thickness [cm]
1	1	0.2	0.3
2	4	0.2	0.3
3	7	0.2	0.3
4	9	0.2	0.3
5	11	0.2	0.3
6	12	0.2	0.3
7	14	0.2	0.3
8	16	0.2	0.3

Fragmentation vs Z

- In scintillator loop(over SCNn deposits):
 - check the generation number of associated TR particle: trid1=pevstr->TRgen[ipart];
- For each event fill the histogram

N_{gen}=1 → not fragmented Otherwise it was fragmented

Fragmentation vs Z

 Stat error is included (small)

- 1M particles
- Thickness of 1 bar=0.3 cm (so 0.6 cm for 2 bars)
- Energy=200 MeV/n
- Z varied

FOOT Fluka simulations

- Introduction
- Setup
- Results
 - Study as function of Z:
 - Fragmentation probability
 - Study as function of bar thickness:
 - Fragmentation
 - Energy resolution
 - Study as function of energy:
 - Fragmentation
 - Energy resolution
 - 2-D plot calorimeter energy vs scintillator energy
- Plans

Samples with varying bar thickness

How does bar thickness influence the fragmentation probability and energy resolution??

- 1M particles shot **directly on scintillator** with fixed energy and 8 different Z-values
- No detector effects included for the moment!

Z	Α	E [GeV]	SCN thickness [cm]
1	1	0.2	0.2
1	1	0.2	0.3
1	1	0.2	0.4
1	1	0.2	0.5
1	1	0.2	0.6
Z	А	E [GeV]	SCN thickness [cm]
Z 6	A 12	E [GeV] 0.2	SCN thickness [cm] 0.2
Z 6 6	A 12 12	E [GeV] 0.2 0.2	SCN thickness [cm] 0.2 0.3
Z 6 6 6	A 12 12 12 12	E [GeV] 0.2 0.2 0.2	SCN thickness [cm] 0.2 0.3 0.4
Z 6 6 6 6 6	A 12 12 12 12 12	E [GeV] 0.2 0.2 0.2 0.2 0.2	SCN thickness [cm] 0.2 0.3 0.4 0.5

Fragmentation vs bar thickness

What about energy resolution?

Energy deposit vs bar thickness

Energy deposit in 1 bar

- FWHM of distribution
- Max: value of maximum probability
- Sigma and mu of gaussian fit

Energy deposit vs bar thickness

- Energy loss increases linearly with bar thickness
- Apart from 1/β², Bethe Bloch depends mainly on Z²

$$\frac{dE}{dx} = K\rho \frac{Z_{\rm p}^2}{\beta^2} \frac{Z_{\rm t}}{A_{\rm t}} \left[\frac{1}{2} ln \left(\frac{2m_{\rm e}c^2 \beta^2 \gamma^2 T_{\rm max}}{I_{\rm e}^2} \right) - \beta^2 - \frac{\delta}{2} - \frac{C}{Z_{\rm t}} \right]$$

 Remember that the value for β is the same given the kinetic energy is given in energy per nucleon

$$\beta = \frac{p}{E} = \frac{\sqrt{E^2 - m^2}}{E} = \frac{\sqrt{(E_{kin} + m)^2 - m^2}}{E_{kin} + m} = \frac{\sqrt{(\frac{E_{kin}}{m} + 1)^2 - 1^2}}{\frac{E_{kin}}{m} + 1}$$

What about the energy resolution?

Energy resolution vs bar thickness

- Z=1, A=1: FWHM/max varies between 20%-25%, no strong dependence on thickness!
 Z=6, A=12: EWHM/max varies from 6% (d=2 mm) to 2.5% (d=6 mm); resolution
- Z=6, A=12: FWHM/max varies from 6% (d=2 mm) to 3.5% (d=6 mm): resolution decreases with thickness d

Energy resolution vs bar thickness

• Z=1, A=1: σ/μ varies between 9% (2 mm) and 7% (6 mm), weak dependence on d

 Z=6, A=12: σ/μ varies from 2.5% (d=2 mm) to 1.5% (d=6 mm): resolution decreases with thickness d

FOOT Fluka simulations

- Setup
- Results
 - Study as function of Z:
 - Fragmentation probability
 - Study as function of bar thickness:
 - Fragmentation
 - Energy resolution
 - Study as function of energy:
 - Fragmentation
 - Energy resolution
 - 2-D plot calorimeter energy vs scintillator energy
- Plans

Samples with varying energy

How does energy influence the fragmentation probability and energy resolution??

- 1M particles shot **directly on scintillator** with fixed energy and 8 different Z-values
- No detector effects included for the moment!

Z	Α	E [GeV]	SCN thickness [cm]
6	12	0.10	0.3
6	12	0.12	0.3
6	12	0.14	0.3
6	12	0.16	0.3
6	12	0.18	0.3
6	12	0.20	0.3

Z	Α	E [GeV]	SCN thickness [cm]
1	1	0.10	0.3
1	1	0.12	0.3
1	1	0.14	0.3
1	1	0.16	0.3
1	1	0.18	0.3
1	1	0.20	0.3

Fragmentation vs energy

What about energy resolution?

Example ¹H energy deposits

- Energy deposits in 3 mm bar: between 1 and 3 MeV
- Landau shape worsens with increasing energy (decreasing deposit)

Example ¹²C energy deposits

- Nicely gaussian over whole energy range
- Evaluate: <E_{depos}>: mean energy deposit in bar
 - FWHM of distribution
 - Max: value of maximum probability
 - Sigma and mu of gaussian fit

Energy deposit vs energy

Energy resolution vs energy

- Z=1, A=1: SCN resolution defined as FWHM/Emax: 15-25%
- Z=6, A=12: SCN resolution defined as FWHM/Emax: 3-5%
- Relative energy resolution of scintillator bar increases with energy

Energy resolution vs energy

- Z=1, A=1: SCN resolution defined as sigma/mu = 6% (100 MeV)-8% (200 MeV)
- Z=6, A=12: SCN resolution defined as sigma/mu= 1% (100 MeV/u)-2% (200 MeV/u)
- Relative energy resolution of scintillator bar increases with energy

FOOT Fluka simulations

- Introduction
- Setup
- Results
 - Study as function of Z:
 - Fragmentation probability
 - Study as function of bar thickness:
 - Fragmentation
 - Energy resolution
 - Study as function of energy:
 - Fragmentation
 - Energy resolution

2-D plot calorimeter energy vs scintillator energy

• Plans

2-D plots scintillator vs calorimeter

- Need to check scintillator bar performance in context of other systems: calorimeter
- Separation of different isotopes possible?
- 5 M particles shot on start counter with 3 energies and 2 thicknesses

Chosen as

Z	Α	E [GeV]	SCN bar thickness [cm]		
8	16	0.2	0.3		
8	16	0.35	0.3		
8	16	0.7	0.3		
Ζ	Α	E [GeV]	SCN bar thickness [cm]		
8	16	0.2	0.6		
8	16	0.35	0.6		
8	16	0.7	0.6		

2-D plots scintillator vs calorimeter

- Deposits in scintillator vs deposits in calorimeter
- No detector effects!
- 5M ¹⁶O nuclei with E= 200 ^{LL} MeV (low stat)

scn

- 2 bars 3 mm
- Average energy of 2 bars
- Need to understand the fragments better...
- Cont4z drawoption, z-max set to 70

2-D plots scintillator vs calorimeter

- GeV Depositions in scintillator vs depositions in E_{scn} calorimeter
- No detector effects!
- 5M 16 O nuclei with E= 200 MeV (low stat)
- 2 bars 6 mm
- Average energy of 2 bars
- Need to understand the fragments better...
- Cont4z drawoption,z-max set to 30

These 2-d plots are just visual... need a better way to quantify the difference between 3 and 6 mm bars... Seems that low Z nuclei profit from thicker bar (as before!)

Conclusions

- First tests performed for fragmentation and energy resolution as function of
 - Z
 - bar thickness: with 6 mm better resolution is obtained, but more fragmentation. More studies needed!
 - Energy

BACKUP

• Polyvinyltoluene

Simulations for 2 mm

- Momentum spread included:
 - CNAO: have dP/P
 - FLUKA: Ekin of particle
 - Included dP/P (energy spread in beam) as function of beam energy
- FWM of beam
 - CNAO beam included: have FWHM as function of range in water
 - FLUKA: kin energy
 - Translate kin energy into range, and get FWHM
- Study energy resolution

Simulations for 2 mm

Simulations for 2 mm

Ekin[MeV]	<edep>[MeV]</edep>	<pre>maxp(Edep)[MeV]</pre>	FWHM[MeV]	FWHM/maxp	#mu[MeV]	#sigma[MeV]	#sigma/#mu
70.000	2.094	1.956	0.304	0.155	2.016	0.125	0.062
75.000	1.976	1.868	0.312	0.167	1.903	0.124	0.065
80.000	1.876	1.772	0.312	0.176	1.803	0.120	0.066
90.000	1.707	1.572	0.296	0.188	1.639	0.118	0.072
110.000	1.469	1.332	0.280	0.210	1.399	0.110	0.079
140.000	1.253	1.100	0.248	0.225	1.160	0.098	0.084
170.000	1.114	0.932	0.224	0.240	0.997	0.085	0.086
200.000	1.017	0.812	0.200	0.246	0.884	0.078	0.089
230.000	0.944	0.740	0.176	0.238	0.802	0.074	0.092
	1						

6-9%

Reproduction Roberto Spighi's plot (1)

Generation level: Energy in SCN vs Energy in CAL

Separation IS POSSIBLE, but worst than before due to the statistical fluctuations

34