IXPE software

A primer

Alberto Manfreda alberto.manfreda@pi.infn.it

INFN-Pisa

Torino, 10 maggio 2018

Il telescopio IXPE

Il telescopio IXPE

Rappresentazione artistica

> Tre telescopi identici interamente dedicati alla polarimetria X:

- ▷ Ridondanza totale;
- ▷ Riduzione di effetti sistematici residui.
- ▷ Lunghezza focale: 4 m (boom estensibile).
- ▷ Orbita circolare equatoriale:
 - ⊳ Altezza nominale di 540 km
 - ho Inclinazione di 0°

Effetto fotoelettrico e polarimetria X

Principio di funzionamento

- \triangleright Processo di interazione dominante a bassa energia (< 10 keV).
- Distribuzione di emissione dei fotoelettroni in K-shell modulata al 100% per radiazione polarizzata linearmente:

$$\frac{d\sigma_{\rm C}^{\rm K}}{d\Omega} \propto Z^5 E^{-\frac{7}{2}} \ \frac{\sin^2\theta\cos^2\phi}{(1+\beta\cos\theta)^4}$$

- ▷ Necessità di ricostruire la direzione di emissione del fotoelettrone.
- ho
 ight. La traccia tipica di un fotoelettrone da 5 keV è $\sim \mu m$ in un solido:
 - ⊳ Necessario utilizzare un mezzo gassoso.

II Gas Pixel Detector (GPD) come polarimetro

- ⊳ Componenti di base:
 - \triangleright Finestra di ingresso di Berillio (50 μ m);
 - Cella di assorbimento riempita di gas (He–DME);
 - ▷ Gas Electron Multiplier (GEM) per amplificazione del segnale;
 - ▷ Matrice di pixel esagonali per la raccolta delle cariche (ASIC).
- \triangleright Sensibile fino a energia molto bassa (~ 1 keV).
- ▷ Buona capacità di imaging per sorgenti estese.
- ⊳ Risultato di circa 20 anni di attività di R&D.

La polarimetria X diventa possibile Costa et al., Nature 411, 662-665 (2001)

letters to nature

An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars

Enrico Costa*, Paolo Soffitta*, Ronaldo Bellazzini†, Alessandro Brezt, Nicholas Lumbt & Gloria Spandret

* Istituto di Astrofisica Strariale del CNR. Via Fosso del Cavaliere 100. 1-00133. Rome, Italy

† Istituto Nazionale di Fisica Nucleare-Sezione di Pisa, Via Livornese 1291. I-56010 San Pierro a Grado, Pisa, Italy

The study of astronomical objects using electromagnetic radiation involves four basic observational approaches; imaging, spectroscopy, photometry (accurate counting of the photons received) and polarimetry (measurement of the polarizations of the observed photons). In contrast to observations at other wavelengths, a lack of sensitivity has prevented X-ray astronomy from making use of polarimetry. Yet such a technique could provide a

2k. 0.35 µm

direct picture gravitational structures of inaccessible. for example. field and dete 'pencil' beam¹ the polarizatio presence of a b

instrument that makes X-ray polarimetry possible. The factor of 100 improvement in sensitivity that we have achieved will allow direct exploration of the most dramatic objects of the X-ray sky.

The main advantage of the proposed polarimeter is its capability of investigating active galactic nuclei (guasars, blazars and Sevfert galaxies) for which polarization measurements have been suggested. crucial to understand the geometry and physics of emitting regions. We can separate synchrotron X-rays from jets13.14 from the emission scattered by the disk corona or by a thick torus. The effects of relativistic motions and of the gravitational field of a central black hole have probably been detected by iron line spectroscopy on the Sevfert-1 galaxy MCG-6-30-15 (ref. 15) but this feature is not ubiquitous in active galactic nuclei. Polarimetry of the X-ray continuum provides a more general tool to explore the structure of emitting regions16,17, to track instabilities and to derive direct information on mass and angular momentum12 of supermassive black holes

In spite of this wealth of expectations, the important but only positive result until now is the measurement, by the Bragg technique, of the polarization of the Crab nebula 18,19. The Stellar X-ray Polarimeter20 (SXRP) represents the state of the art for conventional methods based on Bragg diffraction and Thomson scattering.

105k, 0.18 µm, self-triggering

athogen angle at one try22 is nonsensitivity of plarimetry rization. The

rish famine'

tronomy

es the light

otassium

annels lechanism nactivation

22k. 0.35 um nergy which is nding energy. ed around that photoelectron

natur

Self-assembly of icosahedral bilayers useum piece CFRN **CR** identifies

- > Capacità di auto-generazione del segnale di trigger.
- $\,\triangleright\,$ Definizione interna della regione di interesse per la lettura degli eventi (dimensione tipica della finestra < 1 k pixels).
- > Lettura multipla per la sottrazione dei piedistalli evento per evento.

Analisi a livello di evento

Traccia reale di un fotoelettrone da 5.9 keV

- ▷ L'analisi avviene evento per evento.
- ▷ Ricostruzione delle tracce:
 - Primo passo: baricentro, analisi dei momenti, uso della skewness delle proiezioni longitudinali per identificare il picco di Bragg.
 - Secondo passo: determinazione del punto di assorbimento e analisi dei momenti pesata per una stima più accurata della direzione di emissione.
- ⊳ La morfologia degli eventi è ricca!

Formalismo di base

Come funziona un polarimetro?

 \triangleright Ogni polarimetro misura la modulazione azimutale attorno all'angolo di polarizzazione ϕ_0 del fascio di fotoni incidente:

$$R(\phi) = A + B\cos^2(\phi - \phi_0)$$

▷ Fattore di modulazione: risposta alla radiazione 100% polarizzata:

$$\mu = \frac{R_{\max} - R_{\min}}{R_{\max} + R_{\min}} = \frac{B}{B + 2A}$$

Performance del GPD come polarimetro

- ▷ Fattore di modulazione: 0.2 (0.7) a 2 (8) keV.
 - \triangleright Stabilità su \sim 3 anni dimostrata con un rivelatore sigillato;
 - $\,\triangleright\,$ Modulazione residua per radiazione non polarizzata \sim 0.1%.
- \triangleright Risoluzione spaziale: ~ 90 μ m a 5.9 keV (\ll traccia).
 - $\rhd\,$ Buona per un telescopio a raggi X con \sim 4 m di lunghezza focale e \sim 20 arcsec di risoluzione angolare.
- \triangleright Risoluzione energetica (FWHM): \sim 15% a 5.9 keV.
 - Abbastanza per fare polarimetria spettralmente risolta (in pochi bin di energia), quando la statistica lo permette.
- \triangleright Risoluzione temporale: $\sim \mu$ s.
 - ▷ Più che adeguata per le scale di tempo di interesse.

Reconstruction Alogorithm

Thresholding

- The numbers within each pixels are the signal ADC counts, the typical noise floor being 2-4 ADC counts
- $\rhd\,$ All the pixels below a fixed threshold ($\sim 2-3\sigma$ noise typically) are suppressed

Clustering

- > Group together all the contiguous pixels above threshold
- The cluster with the highest total pulse height is considered the main cluster (following steps ignore all the other clusters)
- > The barycenter of the main cluster is computed

- ▷ Clustering is done with the DBSCAN algorithm
- One parameter can be tuned: the pixel density which defines the core of the cluster (number of neighbours over threshold)
- > Default (optimal?) value is 4, to remove the tails

Moment analysis - First Pass

- Diagonalize the inertia tensor of the two-dimensional charge distribution around the barycenter to found principal axis
- $arphi ~\sqrt{M_2^{
 m long}}$ and $\sqrt{M_2^{
 m trans}}$ are the semiaxes of the ellipsoid of inertia
- $\triangleright M_2^{\text{long}}/M_2^{\text{trans}}$ is a proxy for the elongation of the track

- One-dimensional projection of the charge distribution along the principal axis of the cluster
- \triangleright Calculate the third moment M_3^{long} of the distribution

$$\triangleright$$
 Skewness: $\gamma_1 = \frac{M_3^{\text{long}}}{(M_2^{\text{long}})^{\frac{3}{2}}}$

 $\triangleright\,$ The sign of γ_1 indicates the side of the distribution with the lowest ionization, i.e., the initial part of the track.

Search region for the absorption point

- ▷ The first estimate of the absorption point is the barycenter of all the pixel in the non-shaded region
- The sign of the skweness is used to pick the correct half of the circle (i.e. the one eclosing to the beginning of the track)

Moment analysis - Second Pass

 \triangleright Run a second-pass moments analysis weighting the pixels according to their distance *d* to the first estimate of the interaction point

$$w_i = e^{-\frac{d}{d_0}}$$
 $d_0 = 50 \ \mu m$

- b The weighted barycenter is the new estimate of the interaction point
- ▷ The principal axis from this second step is the final track direction

 Selection cuts optimization in the current scheme for maximizing the modulation factor

▷ Background rejection via track shape discrimination

 Use of machine learning algorithms (CT, Neural net) for improved estimation of relevant physical quantities (impact point, principal axis, direction...)

IXPE software

IXPE software (scheme)

- ▷ LvIO Data received from the satellite
- Lv1 Data after telemetry parsing and corrections
- Lv1a Data after calibration and event reconstruction (still in the detecor coordinate system)
- Lv2 Data projected into sky coordinates. Compliant with ds9 and xspec

- ▷ ixperecon lives inside the gpdsw package
- ▷ gpdsw hosts other related pieces of software:
 - ⊳ ixpedisplay
 - ⊳ ixpesim
 - ▷ ixpedaq, ixpemonitor (in development)
- and all the code these applications share (e.g. detector geometry)
- Currently gpdsw is a private repository, development often driven by hardware/calibration needs
- ▷ Will become a (bunch of) FTOOLS
- Observation simulation tool (xpobsim) developed separately see Niccolò's lesson.

IXPE GPD ground software

This meant to be the basic entry point for the Imaging X-ray Polarimetry Explorer (IXPE) software related to the Gas Pixel Detector (GPD).

Overview

The gpdsw package covers a number of diverse and yet related areas, including:

- · detector geometry;
- detector calibration;
- · event reconstruction;
- · detector simulation;
- data acquisition;
- · data quality monitor;
- · data analysis;
- · support for for legacy data.

The framework is conceived as a set of C++ classes and applications with Python wrappers built through SWIG. Part of the software is implemented in pure Python and the entry point for the corresponding documentation is here.

New to gpdsw? Look at the installation notes.

Anxious to read data and do something with them? Go ahead and do it in Python.

See also our Release notes.

Copyright © 2017 the IXPE GPD team. Generated by Doxygen 1.8.13 on Mon Feb 26 2018 16:18:18

http://bigfoot.iaps.inaf.it/gpdsw/

> gpdext: collection of external libraries (a separate package)

- ▷ cfitsio and boost are required for ixperecon
- ▷ Qt5 for graphical products (GUI, event display)
- ▷ GEANT4 for detector simulation
- ▷ gpdswpy (inside gpdsw): collection of python code
 - \triangleright wrapping of most of the gpdsw modules (SWIG)
 - ▷ utilities for data analysis (binning, fitting, plotting etc...)
 - \triangleright testing

Lv1 FITS file

<u>W</u>indow <u>S</u>ubsets <u>H</u>elp

Table Browser for 1: 102 0000020 data trimmed.fits

	PAKTNUMB	TRG_ID	SEC	MICROSEC	TIME	MIN_COL	MAX_COL	MIN_ROW	MAX_ROW	R0I_SIZE	ERR_SUM	PIX_PHAS			
1	0	1	7552571	12223	7,552571E6	86	113	248	277	840	0	(4, 5, 3, 10, 2, 10, 5, 2, 3, 1, 4, 6, 3, 4, 7, 9, 6, 3, 9, 6, 5, 2, 5, 6, 3, 8, +			
2	0	2	7552571	15108	7,552571E6	164	185	316	343	616	0	(7. 2, 5, 2, 5, 7, 1, 3, 3, 8, 4, 7, 8, 3, 7, 5, 10, 1, 3, 7, 3, 6, 3, 6, 0, 0, 1			
3	0	3	7552571	49744	7,552571E6	228	251	44	69	624	0	(5, 1, 5, 6, 4, 10, 4, 0, 11, 5, 6, 3, 13, 7, 2, 6, 8, 6, 1, 11, 1, 1, 10, 3, 1			
4	0	4	7552571	65451	7,552571E6	38	59	170	199	660	0	(1, 5, 6, 10, 5, 0, 4, 4, 5, 8, 3, 3, 7, 13, 6, 2, 3, 2, 1, 5, 1, 1, 2, 4, 2, 4,			
5	0	5	7552571	109663	7,552571E6	126	149	120	145	624	0	(8, 0, 2, 3, 6, 8, 2, 4, 7, 0, 4, 4, 14, 6, 5, 4, 0, 2, 2, 7, 4, 2, 1, 1, 6, 0, 3			
6	0	6	7552571	118915	7,552571E6	34	59	292	319	728	0	(2, 6, 2, 1, 1, 6, 1, 0, 5, 11, 0, 0, 1, 9, 3, 9, 4, 0, 7, 1, 1, 4, 3, 4, 1, 6, 1			
7	0	7	7552571	121484	7,552571E6	0	15	134	163	480	0	(4, 0, 3, 8, 0, 1, 4, 10, 7, 2, 4, 10, 3, 4, 5, 0, 1, 1, 4, 10, 0, 2, 6, 4, 0, 1			
8	0	8	7552571	144686	7,552571E6	256	281	168	197	780	0	(6, 10, 4, 7, 3, 8, 2, 4, 0, 5, 12, 9, 3, 7, 7, 6, 4, 11, 3, 3, 9, 1, 8, 3, 2, 4			
9	1	9	7552571	170171	7,552571E6	266	291	322	349	728	G	(2, 3, 1, 0, 1, 2, 3, 5, 8, 0, 1, 1, 4, 0, 1, 2, 5, 5, 2, 2, 5, 1, 1, 7, 27, 2, 2			
10	1	10	7552571	234219	7,552571E6	270	289	0	25	520	0	(7, 6, 7, 6, 1, 18, 0, 6, 9, 9, 11, 5, 1, 2, 4, 6, 9, 4, 1, 2, 5, 2, 2, 4, 1, 1,			
11	1	11	7552571	239766	7,552571E6	264	287	244	271	672	G	(9, 11, 2, 5, 3, 5, 1, 9, 3, 6, 1, 5, 2, 5, 6, 3, 1, 6, 7, 4, 12, 6, 1, 4, 7, 0,			
12	1	12	7552571	263907	7,552571E6	162	179	0	23	432	0	(5, 2, 1, 7, 3, 4, 4, 4, 4, 9, 11, 2, 5, 4, 9, 3, 1, 2, 0, 0, 3, 4, 3, 0, 3, 5, 4			
13	1	13	7552571	283524	7,552571E6	246	267	232	263	704	G	(5, 3, 1, 1, 8, 10, 11, 1, 5, 4, 3, 6, 7, 10, 4, 2, 6, 8, 3, 3, 2, 4, 9, 1, 7, 3			
14	1	14	7552571	305733	7,552571E6	130	153	154	181	672	0	(1, 6, 2, 4, 6, 5, 6, 13, 8, 20, 1, 2, 4, 9, 2, 0, 3, 3, 0, 3, 3, 0, 12, 4, 4, 0			
15	1	15	7552571	311365	7,552571E6	170	193	106	133	672	0	(3, 3, 6, 0, 3, 3, 8, 3, 1, 3, 1, 6, 0, 2, 0, 6, 7, 8, 6, 0, 4, 4, 1, 4, 2, 0, 2,			
16	1	16	7552571	336665	7,552571E6	196	215	212	237	520	G	(1. 8, 6, 3, 10, 13, 9, 7, 9, 5, 1, 0, 5, 4, 7, 5, 3, 5, 1, 10, 7, 7, 1, 6, 4, 9			
17	2	17	7552571	373864	7,552571E6	194	217	254	285	768	0	(0, 4, 2, 9, 9, 11, 6, 2, 2, 9, 2, 3, 4, 3, 8, 2, 5, 1, 5, 4, 3, 0, 2, 4, 0, 6, 2			
18	2	18	7552571	405598	7,552571E6	100	125	82	111	789	G	(0, 9, 8, 7, 2, 4, 7, 5, 5, 4, 9, 5, 2, 4, 11, 5, 6, 7, 7, 9, 2, 0, 20, 7, 5, 9,			
19	2	19	7552571	411763	7,552571E6	30	57	268	295	784	0	(3, 7, 8, 3, 6, 3, 3, 7, 4, 3, 6, 12, 3, 7, 5, 4, 3, 10, 1, 4, 2, 5, 0, 3, 5, 0,			
20	2	20	7552571	442849	7,552571E6	244	269	0	15	416	G	(0, 5, 18, 0, 4, 1, 0, 24, 110, 168, 133, 56, 38, 39, 57, 35, 17, 5, 9, 3,			
21	2	21	7552571	493561	7,552571E6	174	197	124	155	768	0	(1, 2, 9, 3, 9, 9, 1, 1, 12, 2, 8, 10, 4, 7, 9, 13, 5, 14, 4, 3, 12, 10, 10, 3			
22	2	22	7552571	496277	7,552571E6	172	197	10	37	728	0	(7, 2, 13, 5, 11, 3, 2, 6, 5, 7, 3, 1, 5, 1, 1, 9, 8, 6, 5, 4, 4, 12, 5, 0, 2, 5			
23	2	23	7552571	503708	7,552572E6	62	87	0	25	676	0	(1, 3, 4, 0, 9, 3, 5, 5, 3, 4, 4, 45, 7, 14, 6, 8, 8, 23, 3, 7, 3, 2, 3, 5, 8, 7			
24	2	24	7552571	532666	7,552572E6	16	33	310	331	396	0	(7, 1, 5, 1, 0, 5, 3, 4, 4, 2, 1, 3, 3, 6, 8, 2, 14, 7, 7, 4, 4, 2, 2, 2, 2, 2, 2, 0			
25	3	25	7552571	569082	7,552572E6	216	235	50	73	480	G	(4, 3, 4, 3, 35, 1, 2, 2, 4, 0, 15, 2, 11, 9, 10, 10, 4, 6, 3, 3, 3, 0, 7, 2, 5			
26	3	26	7552571	581218	7,552572E6	14	39	222	251	780	0	(9, 8, 4, 2, 7, 7, 6, 5, 1, 7, 3, 4, 5, 5, 1, 5, 7, 7, 4, 5, 1, 4, 8, 7, 0, 6, 2,			
27	3	27	7552571	621808	7,552572E6	110	133	10	41	768	G	(8, 3, 3, 6, 6, 4, 3, 6, 10, 13, 0, 6, 2, 5, 6, 2, 6, 6, 4, 2, 4, 3, 5, 1, 4, 4,			
28	3	28	7552571	631115	7,552572E6	158	181	244	271	672	0	(2, 8, 2, 12, 6, 1, 13, 6, 7, 2, 14, 4, 8, 7, 3, 14, 5, 2, 5, 4, 7, 7, 14, 6, 3			
29	3	29	7552571	638490	7,552572E6	254	275	86	115	660	G	(3, 13, 1, 2, 2, 4, 1, 4, 6, 1, 1, 3, 0, 2, 3, 6, 5, 4, 2, 9, 10, 2, 1, 5, 1, 5,			
30	3	30	7552571	662183	7,552572E6	46	73	236	265	840	0	(13, 3, 5, 13, 11, 4, 3, 4, 4, 7, 1, 4, 15, 4, 4, 6, 8, 6, 5, 7, 11, 5, 10, 2,			
31	3	31	7552571	678937	7,552572E6	20	43	178	207	720	0	(5, 7, 5, 3, 6, 10, 3, 9, 6, 0, 8, 1, 2, 3, 1, 8, 5, 15, 6, 6, 3, 1, 6, 3, 5, 5,			
32	3	32	7552571	682120	7,552572E6	32	57	36	61	676	0	(8, 2, 5, 10, 11, 9, 5, 1, 5, 8, 5, 9, 0, 6, 2, 5, 12, 3, 7, 5, 7, 8, 6, 2, 10,			
33	4	33	7552571	716697	7,552572E6	78	99	310	335	572	0	(3, 7, 2, 3, 2, 5, 2, 2, 8, 8, 7, 4, 7, 1, 9, 6, 1, 5, 6, 9, 3, 9, 2, 2, 2, 0, 5,			
34	4	34	7552571	732067	7,552572E6	54	75	232	263	704	0	(8, 1, 5, 0, 4, 5, 2, 9, 2, 4, 1, 11, 12, 3, 0, 5, 3, 5, 2, 6, 2, 5, 5, 1, 4, 3,			
35	4	35	7552571	747453	7.552572E6	0	23	290	323	816	0	(2, 7, 0, 7, 4, 0, 6, 0, 2, 2, 4, 5, 2, 1, 3, 2, 7, 4, 13, 4, 3, 9, 4, 2, 1, 2, 2			
36	4	36	7552571	753836	7,552572E6	62	89	244	269	728	0	(1, 1, 3, 7, 2, 8, 1, 7, 8, 9, 5, 5, 5, 4, 4, 6, 5, 2, 8, 3, 5, 15, 7, 3, 5, 1, 4			
37	4	37	7552571	785513	7,552572E6	80	103	198	225	672	0	(3, 6, 0, 0, 5, 12, 5, 2, 1, 4, 3, 2, 4, 4, 9, 3, 7, 4, 10, 3, 3, 4, 9, 6, 0, 0,			
20		20	7552571	702600	7 55057056	124	34.0	02	111	033	0	16 2 2 1 7 2 2 0 4 7 2 2 4 2 1 2 4 1 4 2 4 2 2 3 4			
	•							1							

Lv1 EVENT table

<u>W</u>indow <u>S</u>ubsets <u>H</u>elp

Table Browser for 1: 001 0002453 data recon.fits

	NUM_CLU	NUM_PIX	TRK_EFRA	TRK_SN	TRK_SIZE	TRK_PHA	TRK_PI	TRK_PHI1	TRK_PHI2	TRK_ABSX	TRK_ABSY	TRK_BARX	TRK_BARY	TRK_M2T	TRK_M2L	TRK_M3L	TRK_SKEW
1	1	335	0,88361	346,83	247	5451	5451,	-2,2263	-2,00217	1,26227	-4,78824	1,14252	-4,94882	0,02738	0,03203	8,750	0,01526 🔺
2	1	298	0,88047	381,54	221	5672	5672,	-1,8359	-1,68735	2,83215	3,82747	2,77251	3,64409	0,02217	0,02789	0,00022	0,04633 =
3	1	226	0,91767	392,47	145	4726	4726,	-2,73939	-2,9162	-0,55475	5,02864	-0,6707	4,97416	0,01475	0,01659	0,00016	0,07429
4	1	282	0,88002	309,62	215	4540	4540,	2,61531	2,50368	0,87782	-5,963	0,64231	-5,81379	0,02033	0,04019	0,00102	0,12647
5	1	328	0,90663	384, 31	255	6137	6137,	0,71644	1,0002	4,67828	-5,17293	4,84081	-5,01553	0,0263	0,03619	-0,00017	-0,0244
6	1	265	0,93719	351,78	190	4849	4849,	-0,21358	-0,05002	-4,17738	4,597	-3,9907	4,55577	0,01844	0,02655	-0,00032	-0,07462
7	1	294	0,91386	459,46	201	6514	6514,	-1,91068	-1,85755	-0,55155	-2,28395	-0,61307	-2,46036	0,01859	0,02551	0,00023	0,05643
8	1	204	0,94982	428,47	153	5300	5300,	3,08229	2,91093	2,50392	7,38855	2,34279	7,41286	0,01568	0,02102	6,133	0,02013
9	1	286	0,93154	384,90	205	5511	5511,	2,53961	2,4409	-1,88227	3,66781	-2,01736	3,77373	0,02035	0,02512	0,00015	0,03803
10	1	263	0,87435	334,08	185	4544	4544,	0,53431	0,58808	-1,11663	-7,00353	-0,95209	-6,90931	0,01861	0,02575	-0,00055	-0,13296
11	1	153	0,98374	359,03	120	3933	3933,	-3,04616	-3,05816	-1,64383	7,49991	-1,85801	7,48496	0,01007	0,02358	0,0005	0,13741
12	1	282	0,89079	374,45	213	5465	5465,	2,95491	3,02798	4,91103	0,6119	4,66522	0,64635	0,01806	0,03534	0,00013	0,01947
13	0	39	0,	Θ,	0	0	0,	-4,	-4,	-9,	-9,	-9,	-9,	-1,	-1,	-99,	-99,
14	1	266	0,8956	410,81	194	5722	5722,	-2,5706	-2,46346	1,57636	-1,25734	1,45161	-1,34502	0,0196	0,02151	0,0002	0,06304
15	1	288	0,94458	378,70	210	5488	5488,	1,6317	1,90441	-0,85966	3,19788	-0,88414	3,37152	0,02293	0,02404	0,00067	0,17876
16	1	279	0,90943	397,88	204	5683	5683,	1,3883	1,44754	-5,24176	-1,23618	-5,20866	-1,07202	0,02096	0,02396	-0,00017	-0,04473
17	1	233	0,97365	410,68	187	5616	5616,	1,26972	1,21038	4,68611	-0,09345	4,73795	0,0545	0,01942	0,02077	-0,00027	-0,08941
18	1	185	0,96862	245,05	130	2794	2794,	0,97885	0,77371	5,20664	-3,11376	5,28106	-3,01825	0,01517	0,01655	-4,065	-0,0191
19	1	280	0,88418	272,11	212	3962	3962,	-0,78376	-0,47348	-4,95661	-6,30408	-4,8194	-6,44553	0,02629	0,03008	-0,00011	-0,02022
20	1	291	0,86433	391,71	197	5498	5498,	0,61617	0,70979	6,41562	-0,17785	6,54354	-0,07287	0,01999	0,02304	-0,00034	-0,0977
21	1	149	0,97725	296,81	121	3265	3265,	-1,63125	-1,71354	7,3769	-6,2856	7,3651	-6,50532	0,01012	0,02612	0,00014	0,03262
22	1	313	0,94073	410,43	231	6238	6238,	-1,38803	-1,55399	-2,53642	6,46487	-2,51235	6,29116	0,02401	0,02695	-0,00012	-0,02785
23	2	215	0,85834	215,26	152	2654	2654,	2,56146	2,47784	-2,26849	-2,51138	-2,39946	-2,4161	0,01952	0,02146	0,00046	0,14611
24	1	313	0,92064	406,72	232	6195	6195,	2,35413	2,19378	-2,18333	-3,5647	-2,31683	-3,3934	0,02026	0,03299	0,00021	0,03506
25	1	218	0,84155	193,19	151	2374	2374,	1,82003	1,75857	3,08416	-3,06248	3,03639	-2,89497	0,01936	0,02254	0,00088	0,25925
26	1	218	0,96936	405,35	174	5347	5347,	-3,02224	-3,13016	-6,98657	-5,24525	-7,13585	-5,27189	0,01744	0,02054	0,00051	0,17467
27	1	292	0,91856	391,64	209	5662	5662,	1,71339	1,56929	-5,5609	3,17392	-5,59606	3,41677	0,01677	0,03293	0,00088	0,14678
28	1	255	0,98412	379,81	197	5331	5331,	3,06093	3,11866	-4,11038	5,87056	-4,28373	5,88184	0,02022	0,02497	0,00036	0,09184
29	1	303	0,89923	365,43	209	5283	5283,	0,81384	1,00942	3,03681	1,38968	3,15327	1,525	0,02295	0,026	-0,00042	-0,10075
30	1	157	0,91331	177,82	115	1907	1907,	0,21343	0,19522	6,14523	1,87375	6,27668	1,91836	0,01413	0,01754	-8,498	-0,03659
31	2	455	0,39476	188,82	143	2258	2258,	-2,93639	2,13606	-6,69381	-3,88256	-6,83213	-3,91445	0,01994	0,02104	0,00034	0,11077
32_	1	213	0,91298	287,78	180	3961	3861,	2,3022	2,01998	7,25649	4,90551	7,14681	5,02679	0,02004	0,0235	0,00016	0,04334
33	1	275	0,9254	450,66	194	6277	6277,	2,28355	2,21497	-0,26	-1,20198	-0,34795	-1,08537	0,0196	0,0209	6,143	0,02033
34	1	142	0,98618	339,33	115	3639	3639,	-1,62224	-1,63121	7,41467	-4,9945	7,39418	-5,26364	0,00705	0,03146	0,00016	0,02927
35	1	286	0,88493	357,47	209	5168	5168,	-1,75009	-2,06498	3,1432	-5,469	3,10921	-5,64363	0,02309	0,02552	0,00015	0,03569
36	1	256	0,90308	375,84	199	5302	5302,	1,2773	1,32458	6,10467	-1,43473	6,14551	-1,29604	0,02208	0,02275	-0,00024	-0,07098
37	1	259	0,92581	424,80	185	5778	5778,	-1,54955	-1,62283	2,48974	3,08406	2,49076	2,93949	0,01839	0,01983	-0,00017	-0,06091
20	4	207	0 90702	200 74	222	406.2	406.2	1 50000	1 07720	2 01 221	2 77967	30360 C	2 07714	0.00570	39000 0	0 00092	0 16066

Lv1a EVENT table

EVENT table

- ▷ X: Event X position (SKY frame)
- ▷ Y: Event Y position (SKY frame)
- ▷ PHI: Photoelectron emission angle in radians (SKY frame)
- ▷ PHE_U: Sin(2*PHI)
- ▷ PHE_Q: Cos(2*PHI)