Introduction to X-ray astronomy

http://sagittarius.star.bris.ac.uk/~ayoung/dokuwiki/doku.php

Overview

- History
- Detecting X-rays
- Statistics
- Current observatories
- Calibration & background issues
- X-ray data analysis

X-ray astronomy

- At very short wavelengths we deal with photon energies instead of λ
 - Measured in electron Volts, eV
- X-rays: energies of approx 100eV to 100keV
 - Absorbed by the atmosphere so observatories are space based

History

- 1960s rockets carried balloons with X-ray detectors
- 1970 NASA's Uhuru was 1st X-ray satellite
- 1979 NASA's Einstein launched
 focussed X-rays (good spatial resolution)
 - data still used
- 1990 ROSAT (German/USA/UK)
 - operated for 9 years
 - ROSAT all sky survey
- 1993 ASCA (Japan)
 - good spectral resolution
 - -1^{st} to use CCD X-ray detectors

New Millennium

- 1999 saw launch of Chandra and XMM-Newton

 NASA's Chandra high spatial resolution
 ESA's XMM high sensitivity
- 2005: Japan's Suzaku mission launched
 - High resolution X-ray spectrometer failed after launch, imager still performing useful science

Overview

- History
- Detecting X-rays
- Statistics
- Current observatories
- Calibration & background issues
- X-ray data analysis

X-ray Telescopes

- X-rays energetic enough to pass through normal mirrors
- Grazing incidence reflection can occur for 'soft' Xrays (energies ≤10keV)
- Incident angles must be $\geq 89^{\circ}$
- Surface finish must be extremely smooth
 - 1nm equivalent to wavelength of 1.24keV X-ray

X-ray Telescopes

- Hans Wolter developed mirrors using this effect in 1950s
- Use paraboloid and hyperboloid sections in annular arrangement
- X-rays brought to focus by successive grazing reflections
- Effective area low due to small grazing angles

X-ray Telescopes

- Nest several Wolter mirrors inside one another
 Increases the effective collecting area
- Chandra X-ray observatory uses 4 nested mirrors

Charge-Coupled Devices

- Standard detector type in astronomy
- Used from near infra-red to X-rays
- Constructed from semi-conductors
- In a solid, electrons have allowed and forbidden bands of energy, not well defined energy levels as in atoms
- Size of forbidden gap between bands and completeness with which lower energy band is filled determine if solid is
 - Conductor
 - Insulator
 - Semi-conductor

In a conductor

- Lower energy band not completely filled
- Electrons may travel freely in this unfilled part and conduct electricity

Conductor

In an insulator

- Lower energy level is full
- Electrons require great deal of energy to move into upper allowed band and conduct

Conductor Insulator

In a semi-conductor (e.g. Silicon)

- Lower energy level is full
- Forbidden gap is small enough that electron may be excited across it thermally or by absorbing a photon
- Produces an electron-hole pair, both of which contribute to conductivity

- CCDs make use of this property of semiconductors
- Photons striking the semiconductor free electrons (photoelectric effect) which are then stored
 – Record the number of photons
- Size of forbidden band in Silicon fixes the infra-red limit for CCD use at ${\sim}1.1\mu m$
 - At longer λ not enough energy to free electrons
- Cooling detector reduces
 background
 - Fewer electrons thermally excited through forbidden band

Semi-conductor

- CCDs divided into pixels ~20µm square by thin layers of insulator
- Incident photon liberates electron which is collected in electric field near +ve electrode
- Charge held and more electrons added if more photons arrive until readout

- During read-out voltages on electrodes are cycled to transfer charge from pixel to pixel
- In readout direction, insulators are actually electrode gates on which the voltage can be varied to allow charges to pass

- During read-out voltages on electrodes are cycled to transfer charge from pixel to pixel
- In readout direction, insulators are actually electrode gates on which the voltage can be varied to allow charges to pass

- During read-out voltages on electrodes are cycled to transfer charge from pixel to pixel
- In readout direction, insulators are actually electrode gates on which the voltage can be varied to allow charges to pass

- During read-out voltages on electrodes are cycled to transfer charge from pixel to pixel
- In readout direction, insulators are actually electrode gates on which the voltage can be varied to allow charges to pass

- During read-out voltages on electrodes are cycled to transfer charge from pixel to pixel
- In readout direction, insulators are actually electrode gates on which the voltage can be varied to allow charges to pass

- During read-out voltages on electrodes are cycled to transfer charge from pixel to pixel
- In readout direction, insulators are actually electrode gates on which the voltage can be varied to allow charges to pass

- During read-out voltages on electrodes are cycled to transfer charge from pixel to pixel
- In readout direction, insulators are actually electrode gates on which the voltage can be varied to allow charges to pass

•			•	
•	•		•	•
	\bullet	\bullet	•	•
•	•		•	
•	•	•		•

•			•		
•	•		•	•	
•			•	•	
•	•	\bullet	•		
	•	•	•		٠

•			•		
•			•	•	
•		\bullet	•	•	
•	•	\bullet	•		
		•	•	•	

•			•		
•	•		•	•	
•			•	•	
•	•	\bullet	•		
			•	•	•

•			•		
•	•		•	•	
•	\bullet		•	•	
•	•	\bullet	•		
				•	٠

•			•		
•	•		•	•	
•			•	•	
•	•	\bullet	•		
					٠

- Charge is transferred along a row and read out
- Then the next row is transferred down to the readout row and the process repeats

- Charge is transferred along a row and read out
- Then the next row is transferred down to the readout row and the process repeats

- Charge is transferred along a row and read out
- Then the next row is transferred down to the readout row and the process repeats

- Typical CCDs are 2048 x 2048 pixels
- Number of charge transfers could be up to 4096 for last pixel in last row

– Charge transfer efficiency must be > 99.9999%

- Even largest CCDs are small compared to sizes possible with photographic plates
- However, can use mosaiced arrays of CCDs to cover a larger field of view
 - Connections must be restricted to one edge

Array of 2048 x 4096 CCDs used on Subaru • Gaps between CCD chips can be removed by combining slightly offset images or dithering

X-ray CCDs

- CCDs can be used in soft X-ray region
- Design very similar to optical CCDs
 - In optical, each photon liberates electron in a pixel
 - Number of electrons at end of exposure = number of photons received

X-ray CCDs

- Energy of single X-ray sufficient to release many electrons in pixel
- Charge on a pixel when read out gives energy of photon
 - Providing only one photon detected by pixel
- Even brightest X-ray sources emit few photons per unit time compared to optical sources
- In a short exposure (~1s), each CCD pixel receives 0 or maybe 1 photon
- Long exposure built up from many short exposures and readouts
- Record position, energy and time of each photon
Time Resolution

- Time of arrival of photon determined from which short exposure & readout it was detected in
- The time taken to shuffle the charges between pixels to read out CCD places limit on time resolution
- Improve by only activating small part of CCD
 - reduces readout time
 - e.g. different timing modes of EPIC MOS camera on XMM-Newton

Pile Up

- For extremely bright, compact source, more than one X-ray photon may be incident on a single pixel during short exposure
- Adds more electrons to charge on pixel
- At readout, extra charge from additional photons mistaken for single high energy photon
- Condition called **pile up**
- Incorrect energies of X-rays

Front and Back Illumination

- Front illuminated (FI) CCDs the side of the CCD with the readout electronics is exposed
 - Easy to manufacture, lower background
- Back illuminated (BI) CCDs the other side is exposed to incident photons
 - Improved quantum efficiency and energy resolution
 - Harder to manufacture

X-ray Gratings

- While CCDs provide good energy resolution, high energy resolution requires grating spectrometers
- Transmission or reflection gratings diffract X-rays

- Reflection gratings on XMM have ~650 lines/mm
 - 10x energy resolution of CCDs
- Good for studying narrow spectral features (lines)

X-ray Calorimeter

- First space-based calorimeter on Suzaku failed, but a calorimeter will be flown in the (near?!) future
- Detects the change in temperature due to the arrival of a single X-ray photon
- Uses Transition-Edge Sensors
 - resistance changes rapidly near critical temperature at which pixel becomes x-ray superconductor
- Excellent energy resolution
 - few eV or better

Key Points

- X-ray telescopes use grazing reflections
- Most modern detectors are arrays of CCDs
- Energy of X-ray determines charge released in pixel
- Use grating spectrometers for higher energy resolution
- Record position, energy, time of each photon

Switch Brains Off

Overview

- History
- Detecting X-rays
- Statistics
- Current observatories
- Calibration & background issues
- X-ray data analysis

Photon Counting

- X-ray astronomy is photon-starved; count individual photons
 - counting statistics are extremely important
- Suppose a detector has a background level of 1 photon per second
 - In 100s we detect 120 photons is there a source there?

Statistics

- Statistics help us to decide what is real
- Statistics are much used/abused in everyday life:
 - news
 - advertising
- Advertisement in cinema:
 - "One in three children in Birmingham wait longer to be adopted"

- "Data Reduction and Error Analysis" Bevington
- "Astrostatistics" Babu & Feigelson

Photon Counting

- If the mean count rate of a source is 1.25 photons/s how many are emitted in 10s?
- 12.5? × (but true on average)
- 12? 13? 9? ... maybe!

• Emission of photons is a random process described by the Poisson probability distribution

$$P(N) = \frac{\mu^N e^{-\mu}}{N!}$$

- Gives the probability of N events occurring depending on the ^{0.3} mean number µ expected 0.2
- N is integer, µ is real

Photon Counting

- If the mean count rate of a source is 1.25 photons/s how many are emitted in 10s?
- 12.5? × (but true on average)
- 12? 13? 9? ... maybe!

In a 10s observation μ =12.5

- P(N=12) = 0.113
- P(N=13) = 0.109
- P(N=9) = 0.077

So if we made 100 ten second observations of this source, we would detect 9 photons in about 8 of them

Each observation is a "random" snapshot of reality

$P(N) = \frac{\mu^N e^{-\mu}}{N'}$

- The mean of the Poisson distribution is $\boldsymbol{\mu}$
- The standard deviation (spread) of distribution is $\sqrt{\mu}$ Corresponds to uncertainty on N
- So for μ =10, fractional spread is

$$\sqrt{\mu}/\mu = 33\%$$

• And for μ =100, fractional spread is

$$\sqrt{\mu}/\mu = 10\%$$

 So for higher numbers of photons (bright sources or long exposures) statistical noise is smaller fraction of source signal

- e.g. A flat smooth source imaged with a detector of 100 x 100 pixels
- Source rate is 1 count per pixel per second

1 second

100 seconds

Signal to Noise

- A detector has a background level of 1 photon per second
- In 100s we detect 120 photons is there a source there?
 - Maybe

– Maybe noise

Consider a detector counting individual photons from a source with count rate **s** photons/s, on a background of **b** photons/s

• In time **t** seconds, total number of counts

$$N_{tot} = (s+b)t \pm \sqrt{(s+b)t}$$

• Assume can neglect uncertainties on background, total bg counts

$$N_{bg} = bt$$

• So our estimate of the number of source photons is

$$N_{src} = N_{tot} - N_{bg} = st \pm \sqrt{(s+b)t}$$

$$N_{src} = N_{tot} - N_{bg} = st \pm \sqrt{(s+b)t}$$

• So to measure s

$$\frac{N_{src}}{t} = s \pm \sqrt{(s+b)/t}$$

- The ratio
- Is called the signal to noise ratio (SNR) measures the quality of the data

 $s/\sqrt{(s+b)/t}$

• Equivalently, can write

$$SNR = N_{src} / \sqrt{N_{tot}}$$

Signal to Noise

- Signal to noise ratios (SNR) measure quality of data:
 - -SNR = 3 is a borderline detection
 - SNR = 5 is a solid detection
 - SNR = 10 can do some analysis of data
 - SNR = 100 very good data, detailed analysis

Return to our example:

- A detector has a background level of 1 photon/s
- In 100s we detect 120 photons what is SNR?

$$N_{tot} = (s+b)t = 120, N_{bg} = bt = 100$$

 $s = (N_{tot} - N_{bg})/t \pm ((s+b)/t)^{1/2}$
 $s = 0.20 \pm 0.11$

- Not significant detection
- May be a source but need longer observation to be certain

- SNR = $s/((s+b)/t)^{1/2} \rightarrow$ increases with increasing t
- So can detect sources with s<<b if t long enough
- To illustrate:
 - detector with 100 x 100 pixels with background level of 1 photon/pixel/s
 - Source with peak level of 0.2 photon/pixel/s

t = 1s

- SNR = $s/((s+b)/t)^{1/2} \rightarrow$ increases with increasing t
- So can detect sources with s<<b if t long enough
- To illustrate:
 - detector with 100 x 100 pixels with background level of 1 photon/pixel/s
 - Source with peak level of 0.2 photon/pixel/s

t = 10s

- SNR = $s/((s+b)/t)^{1/2} \rightarrow$ increases with increasing t
- So can detect sources with s<<b if t long enough
- To illustrate:
 - detector with 100 x 100 pixels with background level of 1 photon/pixel/s
 - Source with peak level of 0.2 photon/pixel/s

t = 50s

- SNR = $s/((s+b)/t)^{1/2} \rightarrow$ increases with increasing t
- So can detect sources with s<<b if t long enough
- To illustrate:
 - detector with 100 x 100 pixels with background level of 1 photon/pixel/s
 - Source with peak level of 0.2 photon/pixel/s

t = 100s

- SNR = $s/((s+b)/t)^{1/2} \rightarrow$ increases with increasing t
- So can detect sources with s<<b if t long enough
- To illustrate:
 - detector with 100 x 100 pixels with background level of 1 photon/pixel/s
 - Source with peak level of 0.2 photon/pixel/s

t = 200s

- SNR = $s/((s+b)/t)^{1/2} \rightarrow$ increases with increasing t
- So can detect sources with s<<b if t long enough
- To illustrate:
 - detector with 100 x 100 pixels with background level of 1 photon/pixel/s
 - Source with peak level of 0.2 photon/pixel/s

t = 450s

- SNR = $s/((s+b)/t)^{1/2} \rightarrow$ increases with increasing t
- So can detect sources with s<<b if t long enough
- To illustrate:
 - detector with 100 x 100 pixels with background level of 1 photon/pixel/s
 - Source with peak level of 0.2 photon/pixel/s

t = 1000s

- SNR = $s/((s+b)/t)^{1/2} \rightarrow$ increases with increasing t
- So can detect sources with s<<b if t long enough
- To illustrate:
 - detector with 100 x 100 pixels with background level of 1 photon/pixel/s
 - Source with peak level of 0.2 photon/pixel/s

t = 5000s

- SNR = $s/((s+b)/t)^{1/2} \rightarrow$ increases with increasing t
- So can detect sources with s<<b if t long enough
- To illustrate:
 - detector with 100 x 100 pixels with background level of 1 photon/pixel/s
 - Source with peak level of 0.2 photon/pixel/s

t = 50000s

Key Points

- X-ray astronomy is photon starved
- Photon emission is Poissonian
- Counting uncertainty is \sqrt{N}
- SNR is basically signal divided by uncertainty – measures data quality
- SNR increases with time so can detect sources much fainter than background

Overview

- History
- Detecting X-rays
- Statistics
- Current observatories
- Calibration & background issues
- X-ray data analysis

XMM-Newton 1999-

- 3 X-ray telescopes each with 58 nested Wolter mirrors
- Effective area approx 0.4 m²

XMM-Newton 1999-

- 1 EPIC-pn BI CCD camera
- 2 EPIC-MOS FI CCD cameras with gratings

Chandra X-ray Observatory 1999-

- Single X-ray telescope with 4 nested Wolter mirrors
- Effective area approx 0.1 m²
- Lower sensitivity than XMM-Newton
- PSF of 0.5 arcsec compared to 15 arcsec for XMM
- CCD camera and diffraction grating

Chandra ACIS

- ACIS Camera consists of 2 CCD arrays (I & S)
- Optional transmission gratings disperse X-rays along ACIS-S
- Use subset of 6 chips for observations
- 2 BI CCDs, rest FI
 - FI chips suffered radiation damage early in mission
 - Slightly degraded energy resolution

ACIS-I

ACIS-S
Suzaku X-ray Observatory 2005-

- 4 X-ray telescopes
- Effective area ~0.3-0.4 m^2 at 1.5 keV
- PSF ~2 arcmin
- CCD camera
- Hard X-ray detector
 - Non-imaging, collimated hard X-ray instrument
 - -10-600 keV
- Calorimeter failed on launch

Overview

- History
- Detecting X-rays
- Statistics
- Current observatories
- Calibration & background issues
- X-ray data analysis

X-ray Data

- X-ray observatories record position, time and energy of every event detected in an **events list**
- Extract information we are interested in from events list
 - Take N(x,y) and make image
 - Take N(t) and make lightcurve
 - Take N(E) and make spectrum
- In practice, perform additional filtering
 - e.g. make image in particular energy band
 - e.g. extract spectrum from spatial region

FITS files

- Majority of X-ray data handled in FITS files
- FITS file contains one or more extensions that can be images or tables
- Convention is that extension 0 is always an image, even if it is empty
- Many tools exist for extracting and performing operations on data in FITS files

0 – Empty image extension

- 1 Events table (x, y, t, e, ...)
- 2 Good time interval table for CCD 1

3 – Good time interval table for CCD 2

Typical FITS events list structure

FITS files

- Each extension consists of a header and then data
- Header contains set of keywords and values of useful information

- In addition to X-ray data, also need files to describe calibration of instrument
 - Describe everything that happens to a photon from when it reaches telescope to when it is recorded in events list

Redistribution Matrix Files

- RMF files describe probability that a photon of a given energy will be detected in a given "channel"
- Channels are discrete energy bins in which events are detected
- Design detectors to have tightest RMF possible
- Primarily used when fitting models to extracted spectra

Plots show log and linear colourscale of a Chandra RMF

Ancillary Response File

- ARF describes effective area of telescope as function of photon energy
- Significantly changes shape of incident spectrum

Exposure Map

- Effective area decreases away from optical axis (vignetting)
- Exposure map is image describing this variation in effective area
- Includes CCD gaps, bad pixels & columns etc
- Used in image analysis
- Divide image by exposure map to correct for these effects
- Energydependent

Point Spread Function

- PSF describes spread of photons around ideal point source
- Limits angular resolution of images
- Depends on photon energy and off-axis angle
- Chandra FWHM is 0.5"
- XMM FWHM is 15"
- Important for detection, analysis and exclusion of point srcs & image analysis

Chandra PSF

X-ray background

- For virtually all types of analysis, have to consider the background emission
- For X-ray data, background consists of:
 - particle background
 - high energy cosmic rays hitting detectors
 - fluorescent background
 - particles hitting parts of satellite and producing X-rays
 - soft proton background
 - low energy protons hitting detectors highly variable
 - unresolved X-ray sources
 - soft Galactic foreground
 - varies with position on sky

Background Subtraction

- Subtract or model bg to measure source properties
 need to know what bg is
- Measure background near to source in same observation
 - local bg
- Take background from observation(s) of fields with no sources
 - blank-sky bg

Local Background

- BG measured at same time and nearly same point on sky
- BG measured at different detector position to source

Blank-sky Background

- BG measured at same detector position as source
- Long bg exposures, so better statistics
- BG measured at different time(s) and position(s) on sky

Key Points

- FITS files contain extensions with headers
- RMF probability photon energy E is assigned to particular detector channel
- ARF effective area Vs energy
- Exposure map effective area Vs position (vignetting)
- PSF point spread function
- Background must be subtracted or modelled to study source
 - local background
 - blank sky background

Overview

- History
- Detecting X-rays
- Statistics
- Current observatories
- Calibration & background issues
- X-ray data analysis

Data Analysis

- Brief and general overview of type of steps you'll follow when analysing X-ray data
 - Data preparation
 - Imaging analysis
 - Spectroscopy
 - Model fitting

Data Preparation

- Data we get from satellites has already had some processing performed (level 1 events list)
- Additional steps required before analysis
 - Apply calibrations
 - Clean and filter data
- Reprocess level 1 events with latest calibration products
 - Correct for e.g. charge transfer inefficiency, gain
- Remove "bad" events based on grades or flags
 Eliminates some non X-ray events

Data Cleaning

- Data from XMM (and Chandra) are frequently affected by soft proton flares
- Periods of observations with extremely high bg
- Create a lightcurve of observation and filter
 Create a good time interval (GTI) file
- N.B. Low-level flares harder to detect
- Background spectrum during flares is significantly different than quiescent BG
 - Residual flares can affect results

Image Analysis

- Typical image related tasks we might want to perform
 - Make image
 - Exposure correction
 - Source detection
 - Smoothing
 - Flux estimates
 - Radial profile

Making an Image

- Basically make image by recording N counts in each pixel
- Spectrum of source and bg are different
 - improve SNR by selecting energy band for image

- Could make images in different E bands or time intervals
- Divide by exposure map to correct for chip gaps, vignetting...

bg spectrum

Image Smoothing

- Smoothing an image by convolving it with a kernel (usually Gaussian)
 - Helps improve contrast of faint extended features
 - Improves appearance for cosmetic purposes

 Adaptive smoothing varies size of smoothing kernel to maintain minimum SNR in structures

Radial Profiles

- Measure the surface brightness of source in a series of annular bins
- Useful way to characterise distribution of extended sources
- Test if source is extended/resolved

Spectral Analysis

- Extracting spectra and fitting models key way to investigate source properties
- For imaging spectroscopy
 - Define source (and bg) region
 - Extract source and bg spectra
 - Generate ARF and RMF
 - Fit physical model to data

Spectral Analysis

- Define src region to maximise SNR
- Extract spectrum N photons detected in each energy bin
- Extract local or blank-sky bg

- Depending on fitting method, may need to regroup spectrum so minimum number counts per bin
 - e.g. χ² assumes Gaussian errors

Spectral Fitting

- Spectral model is "folded through" response before being compared to data using e.g. χ^2 statistic
- e.g. ARF changes model shape, RMF blurs emission lines
- Find model parameters that give best agreement with data
- Model here is absorbed thermal plasma
 - All extra-galactic sources absorbed at low-E by atomic H

High Resolution Spectroscopy

- The RMF for gratings data is more "diagonal" than for CCDs
- Gratings offer high spectral resolution (can even look like optical spectra!) and are ideal for studying narrow spectral features
- Electron transitions in ions produce absorption and emission lines at specific wavelengths (a quantum mechanical effect)
- Can tell us about ionization state, temperature, bulk velocity, velocity dispersion, column density, etc.

Emission Mechanisms

- Common radiative processes in high-energy astrophysics
 - Synchrotron (& cyclotron) radiation
 - Electrons gyrating around magnetic field lines
 - Compton scattering
 - Photon—electron interaction (photon loses energy)
 - Inverse-Compton scattering
 - Photon—electron interaction (photon gains energy)
 - Thermal bremsstrahlung
 - Electron—ion interaction (also called "free-free" radiation)
- Good book is Radiative Processes in Astrophysics by Rybicki & Lightman

Software

- ds9 visualise images and events lists
- ciao Chandra specific and general FITS tools
- sas XMM specific and general FITS tools
- ftools general FITS tools
- zhtools general FITS tools
- funtools general FITS tools
- xspec spectral fitting
- isis spectral fitting, high-resolution spectroscopy
 pvm + isis allows parallelization of data analysis
- perl / shell scripts very useful when you need to repeat a data extraction / analysis task

