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X-ray astronomy

• At very short wavelengths we deal with photon 
energies instead of λ
– Measured in electron Volts, eV

• X-rays: energies of approx 100eV to 100keV
– Absorbed by the atmosphere so observatories are 

space based



  

History

• 1960s rockets carried balloons with X-ray detectors
• 1970 NASA's Uhuru was 1st X-ray satellite
• 1979 NASA's Einstein launched

– focussed X-rays (good spatial resolution)
– data still used

• 1990 ROSAT (German/USA/UK)
– operated for 9 years
– ROSAT all sky survey

• 1993 ASCA (Japan)
– good spectral resolution
– 1st to use CCD X-ray detectors



  

New Millennium

• 1999 saw launch of Chandra and XMM-Newton
– NASA's Chandra high spatial resolution
– ESA's XMM high sensitivity

• 2005: Japan's Suzaku mission launched
– High resolution X-ray spectrometer failed after 

launch, imager still performing useful science
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X-ray Telescopes

• X-rays energetic enough to pass through normal 
mirrors

• Grazing incidence reflection can occur for 'soft' X-
rays (energies ≤10keV)

• Incident angles must be ≥89º
• Surface finish must be extremely smooth

– 1nm equivalent to wavelength of 1.24keV X-ray



  

X-ray Telescopes

• Hans Wolter developed mirrors using this effect in 
1950s

• Use paraboloid and hyperboloid sections in annular 
arrangement

• X-rays brought to focus by successive grazing 
reflections

• Effective area low due to small grazing angles



  

X-ray Telescopes

• Nest several Wolter mirrors inside one another
– Increases the effective collecting area

• Chandra X-ray observatory uses 4 nested mirrors



  

Charge-Coupled Devices

• Standard detector type in astronomy
• Used from near infra-red to X-rays
• Constructed from semi-conductors
• In a solid, electrons have allowed and forbidden 

bands of energy, not well defined energy levels as in 
atoms

• Size of forbidden gap between bands and 
completeness with which lower energy band is filled 
determine if solid is
– Conductor
– Insulator
– Semi-conductor



  

In a conductor
• Lower energy band not completely filled
• Electrons may travel freely in this unfilled part and 

conduct electricity

Conductor

E

Filled

Empty and 
allowed

Forbidden Forbidden
Forbidden

Insulator Semi-conductor



  

Forbidden
Forbidden

Semi-conductor

In an insulator
• Lower energy level is full
• Electrons require great deal of energy to move into 

upper allowed band and conduct

Conductor

E

Filled

Empty and 
allowed

Forbidden

Insulator



  

In a semi-conductor (e.g. Silicon)
• Lower energy level is full
• Forbidden gap is small enough that electron may be 

excited across it thermally or by absorbing a photon
• Produces an electron-hole pair, both of which 

contribute to conductivity

Conductor

E

Filled

Empty and 
allowed

Forbidden Forbidden
Forbidden

Insulator Semi-conductor



  

• CCDs make use of this property of semiconductors
• Photons striking the semiconductor free electrons 

(photoelectric effect) which are then stored
– Record the number of photons

• Size of forbidden band in Silicon fixes the infra-red 
limit for CCD use at ~1.1μm

Forbidden

Semi-conductor

– At longer λ not enough energy to 
free electrons

• Cooling detector reduces 
background
– Fewer electrons thermally excited 

through forbidden band



  

• CCDs divided into pixels ~20μm square by thin layers 
of insulator

• Incident photon liberates electron which is collected 
in electric field near +ve electrode

• Charge held and more electrons added if more 
photons arrive until readout



  

• During read-out voltages on electrodes are cycled to 
transfer charge from pixel to pixel

• In readout direction, insulators are actually electrode 
gates on which the voltage can be varied to allow 
charges to pass 
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• Charge is transferred along a row and read out
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• Charge is transferred along a row and read out
• Then the next row is transferred down to the readout 

row and the process repeats
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• Charge is transferred along a row and read out
• Then the next row is transferred down to the readout 

row and the process repeats



  

• Typical CCDs are 2048 x 2048 pixels
• Number of charge transfers could be up to 4096 for 

last pixel in last row
– Charge transfer efficiency must be > 99.9999%



  

• Even largest CCDs are small compared to sizes 
possible with photographic plates

• However, can use mosaiced arrays of CCDs to cover 
a larger field of view
– Connections must be restricted to one edge

Array of 2048 x 
4096 CCDs used 
on Subaru



  

• Gaps between CCD chips can be removed by 
combining slightly offset images or dithering



  

X-ray CCDs

• CCDs can be used in soft X-ray region
• Design very similar to optical CCDs

– In optical, each photon liberates electron in a pixel
– Number of electrons at end of exposure = number 

of photons received

E

Filled

Empty and 
allowedForbidden

Semi-conductor



  

X-ray CCDs

• Energy of single X-ray sufficient to release many 
electrons in pixel

• Charge on a pixel when read out gives energy of 
photon
– Providing only one photon detected by pixel

• Even brightest X-ray sources emit few photons per 
unit time compared to optical sources

• In a short exposure (~1s), each CCD pixel receives 0 
or maybe 1 photon

• Long exposure built up from many short exposures 
and readouts

• Record position, energy and time of each photon



  

Time Resolution

• Time of arrival of photon determined from which short 
exposure & readout it was detected in

• The time taken to shuffle the charges between pixels 
to read out CCD places limit on time resolution

• Improve by only activating small part of CCD
– reduces readout time
– e.g. different timing modes of EPIC MOS camera 

on XMM-Newton



  

Pile Up

• For extremely bright, compact source, more than one 
X-ray photon may be incident on a single pixel during 
short exposure

• Adds more electrons to charge on pixel
• At readout, extra charge from additional photons 

mistaken for single high energy photon
• Condition called pile up
• Incorrect energies of X-rays



  

Front and Back Illumination

• Front illuminated (FI) CCDs - the side of the CCD with 
the readout electronics is exposed
– Easy to manufacture, lower background

• Back illuminated (BI) CCDs - the other side is 
exposed to incident photons
– Improved quantum efficiency and energy resolution
– Harder to manufacture



  

X-ray Gratings

• While CCDs provide good energy resolution, high 
energy resolution requires grating spectrometers

• Transmission or reflection gratings diffract X-rays

• Reflection gratings on XMM have ~650 lines/mm
– 10x energy resolution of CCDs

• Good for studying narrow spectral features (lines)



  

X-ray Calorimeter

• First space-based calorimeter on Suzaku failed, but a 
calorimeter will be flown in the (near?!) future

• Detects the change in temperature due to the arrival 
of a single X-ray photon

• Uses Transition-Edge Sensors
– resistance changes rapidly near

critical temperature at which
pixel becomes
superconductor

• Excellent energy
resolution
– few eV or better



  

Key Points

• X-ray telescopes use grazing reflections
• Most modern detectors are arrays of CCDs
• Energy of X-ray determines charge released in pixel
• Use grating spectrometers for higher energy 

resolution
• Record position, energy, time of each photon
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Photon Counting

• X-ray astronomy is photon-starved; count individual 
photons
– counting statistics are extremely important

• Suppose a detector has a background level of 1 
photon per second
– In 100s we detect 120 photons – is there a source 

there?



  

Statistics

• Statistics help us to decide what is real
• Statistics are much used/abused in everyday life:

– news
– advertising

• Advertisement in cinema:
– “One in three children in Birmingham wait longer to 

be adopted”

• “Data Reduction and Error Analysis” - Bevington
• “Astrostatistics” - Babu & Feigelson



  

Photon Counting

• If the mean count rate of a source is 1.25 photons/s 
how many are emitted in 10s? 

• 12.5?   (but true on average)
• 12? 13? 9? ... maybe!

×



  

• Emission of photons is a random process described 
by the Poisson probability distribution

• Gives the 
probability of N 
events occurring 
depending on the 
mean number μ 
expected

• N is integer, μ is 
real  

μ = 1
μ = 4
μ = 10

P N =

N e−

N !



  

Photon Counting

• If the mean count rate of a source is 1.25 photons/s 
how many are emitted in 10s? 

• 12.5?   (but true on average)
• 12? 13? 9? ... maybe!

In a 10s observation μ=12.5
• P(N=12) = 0.113
• P(N=13) = 0.109
• P(N=9) = 0.077
So if we made 100 ten second observations of this 
source, we would detect 9 photons in about 8 of them
Each observation is a “random” snapshot of reality

×
P N =


N e−

N !



  

• The mean of the Poisson distribution is μ
• The standard deviation (spread) of distribution is √μ

– Corresponds to uncertainty on N
• So for μ=10, fractional spread is

• And for μ=100, fractional spread is

• So for higher numbers of photons (bright sources or 
long exposures) statistical noise is smaller fraction of 
source signal

/=33%

/=10%



  

• e.g. A flat smooth source imaged with a detector of 
100 x 100 pixels

• Source rate is 1 count per pixel per second

1 second 10 seconds 100 seconds



  

Signal to Noise

• A detector has a background level of 1 photon per 
second

• In 100s we detect 120 photons – is there a source 
there?
– Maybe
– Maybe noise



  

Consider a detector counting individual photons from a 
source with count rate s photons/s, on a background of 
b photons/s
• In time t seconds, total number of counts

• Assume can neglect uncertainties on background, 
total bg counts

• So our estimate of the number of source photons is

N src=N tot−Nbg = st ± sb t

N tot = sbt ± sb t

Nbg = bt



  

• So to measure s

• The ratio

• Is called the signal to noise ratio (SNR) – measures 
the quality of the data

• Equivalently, can write

N src

t
= s ± sb/ t

s/ sb/ t

N src=N tot−Nbg = st ± sb t

SNR=N src /N tot



  

Signal to Noise

• Signal to noise ratios (SNR) measure quality of data:
– SNR = 3 is a borderline detection
– SNR = 5 is a solid detection
– SNR = 10 can do some analysis of data
– SNR = 100 very good data, detailed analysis



  

Return to our example:
• A detector has a background level of 1 photon/s
• In 100s we detect 120 photons – what is SNR?

Ntot = (s+b)t = 120,    Nbg = bt = 100

s = (Ntot – Nbg)/t ± ((s+b)/t)1/2

s = 0.20 ± 0.11

• SNR = 0.20/0.11 = 1.8
• Not significant 

detection
• May be a source but 

need longer 
observation to be 
certain



  

• SNR = s/((s+b)/t)1/2 → increases with increasing t
• So can detect sources with s<<b if t long enough
• To illustrate: 

– detector with 100 x 100 pixels with background level of 1 
photon/pixel/s

– Source with peak level of 0.2 photon/pixel/s
 

x distance (pixels)t = 1s



  

• SNR = s/((s+b)/t)1/2 → increases with increasing t
• So can detect sources with s<<b if t long enough
• To illustrate: 

– detector with 100 x 100 pixels with background level of 1 
photon/pixel/s

– Source with peak level of 0.2 photon/pixel/s
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• SNR = s/((s+b)/t)1/2 → increases with increasing t
• So can detect sources with s<<b if t long enough
• To illustrate: 

– detector with 100 x 100 pixels with background level of 1 
photon/pixel/s

– Source with peak level of 0.2 photon/pixel/s
 

x distance (pixels)t = 50s



  

• SNR = s/((s+b)/t)1/2 → increases with increasing t
• So can detect sources with s<<b if t long enough
• To illustrate: 

– detector with 100 x 100 pixels with background level of 1 
photon/pixel/s

– Source with peak level of 0.2 photon/pixel/s
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• SNR = s/((s+b)/t)1/2 → increases with increasing t
• So can detect sources with s<<b if t long enough
• To illustrate: 

– detector with 100 x 100 pixels with background level of 1 
photon/pixel/s

– Source with peak level of 0.2 photon/pixel/s
 

x distance (pixels)t = 200s



  

• SNR = s/((s+b)/t)1/2 → increases with increasing t
• So can detect sources with s<<b if t long enough
• To illustrate: 

– detector with 100 x 100 pixels with background level of 1 
photon/pixel/s

– Source with peak level of 0.2 photon/pixel/s
 

x distance (pixels)t = 450s



  

• SNR = s/((s+b)/t)1/2 → increases with increasing t
• So can detect sources with s<<b if t long enough
• To illustrate: 

– detector with 100 x 100 pixels with background level of 1 
photon/pixel/s

– Source with peak level of 0.2 photon/pixel/s
 

x distance (pixels)t = 1000s



  

• SNR = s/((s+b)/t)1/2 → increases with increasing t
• So can detect sources with s<<b if t long enough
• To illustrate: 

– detector with 100 x 100 pixels with background level of 1 
photon/pixel/s

– Source with peak level of 0.2 photon/pixel/s
 

x distance (pixels)t = 5000s



  

• SNR = s/((s+b)/t)1/2 → increases with increasing t
• So can detect sources with s<<b if t long enough
• To illustrate: 

– detector with 100 x 100 pixels with background level of 1 
photon/pixel/s

– Source with peak level of 0.2 photon/pixel/s
 

x distance (pixels)t = 50000s



  

Key Points

• X-ray astronomy is photon starved
• Photon emission is Poissonian
• Counting uncertainty is √N
• SNR is basically signal divided by uncertainty

– measures data quality
• SNR increases with time so can detect sources much 

fainter than background 



  www.xkcd.com
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XMM-Newton 1999-

• 3 X-ray telescopes each with 58 nested Wolter 
mirrors

• Effective area approx 0.4 m2  

• 3 CCD cameras
• 2 diffraction 

gratings for 
improved 
spectroscopy

• ESA mission



  

XMM-Newton 1999-

• 1 EPIC-pn BI CCD camera
• 2 EPIC-MOS FI CCD cameras with gratings

MOS1 CCD 
damaged by 
micrometeorite 
in 2005



  

Chandra X-ray Observatory 1999-

• Single X-ray telescope with 4 nested Wolter mirrors
• Effective area approx 0.1 m2 
• Lower sensitivity than XMM-Newton

• PSF of 0.5 
arcsec 
compared to 
15 arcsec for 
XMM

• CCD camera 
and diffraction 
grating



  

Chandra ACIS

ACIS-I

ACIS-S

• ACIS Camera consists of 2 CCD arrays (I & S)
• Optional transmission gratings disperse X-rays along 

ACIS-S
• Use subset of 6 chips for observations
• 2 BI CCDs, rest FI

– FI chips suffered radiation damage early in mission
– Slightly degraded energy resolution 



  

Suzaku X-ray Observatory 2005-

• 4 X-ray telescopes
• Effective area ~0.3-0.4 m2 at 1.5 keV
• PSF ~2 arcmin
• CCD camera
• Hard X-ray detector

– Non-imaging, collimated hard X-ray instrument
– 10 – 600 keV

• Calorimeter failed on launch
HXD
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X-ray Data

• X-ray observatories record position, time and energy 
of every event detected in an events list

• Extract information we are interested in from events 
list
– Take N(x,y) and make image
– Take N(t) and make lightcurve
– Take N(E) and make spectrum

• In practice, perform additional filtering
– e.g. make image in particular energy band

– e.g. extract spectrum from spatial region 



  

FITS files

• Majority of X-ray data handled in FITS files
• FITS file contains one or more extensions that can be 

images or tables
• Convention is that extension 0 is always an image, 

even if it is empty
• Many tools exist for extracting and performing 

operations on data in FITS files

0 – Empty image extension

1 – Events table (x, y, t, e, ...)

2 – Good time interval table for CCD 1

3 – Good time interval table for CCD 2
...

Typical FITS 
events list 
structure



  

FITS files

• Each extension consists of a header and then data
• Header contains set of keywords and values of useful 

information

TELESCOP - Chandra
INSTRUME - ACIS-I
EXPOSURE - 25000

...

• In addition to X-ray data, also need files to describe 
calibration of instrument
– Describe everything that happens to a photon from 

when it reaches telescope to when it is recorded in 
events list



  

Redistribution Matrix Files

• RMF files describe probability that a photon of a given 
energy will be detected in a given “channel”

• Channels are discrete energy bins in which events 
are detected

• Design detectors to 
have tightest RMF 
possible

• Primarily used 
when fitting models 
to extracted spectra

Plots show log and 
linear colourscale of a 
Chandra RMF



  

Ancillary Response File

• ARF describes effective area of telescope as function 
of photon energy

• Significantly changes shape of incident spectrum

• Used primarily in 
spectral fitting

• Response of 
observatory is 
product of ARF and 
RMF

Chandra ARF



  

Exposure Map

• Effective area decreases away from optical axis 
(vignetting)

• Exposure map is image describing this variation in 
effective area

• Includes CCD gaps, bad pixels & columns etc

• Used in image 
analysis

• Divide image by 
exposure map to 
correct for these 
effects

• Energy-
dependent

Chandra ACIS-I 
exposure map



  

Point Spread Function

• PSF describes spread of photons around ideal point 
source

• Limits angular resolution of images
• Depends on photon energy and off-axis angle

• Chandra FWHM is 
0.5”

• XMM FWHM is 15”
• Important for 

detection, analysis 
and exclusion of 
point srcs & image 
analysis Chandra PSF XMM PSF



  

X-ray background

• For virtually all types of analysis, have to consider the 
background emission

• For X-ray data, background consists of:
– particle background

• high energy cosmic rays hitting detectors

– fluorescent background
• particles hitting parts of satellite and producing X-rays

– soft proton background
• low energy protons hitting detectors – highly variable

– unresolved X-ray sources
– soft Galactic foreground

• varies with position on sky



  

Background Subtraction

• Subtract or model bg to measure source properties
– need to know what bg is

• Measure background near to source in same 
observation
– local bg

• Take background from observation(s) of fields with no 
sources
– blank-sky bg



  

Local Background

• BG measured at same time and nearly same point on 
sky

• BG measured at different detector position to source



  

Blank-sky Background

• BG measured at same detector position as source
• Long bg exposures, so better statistics
• BG measured at different time(s) and position(s) on 

sky



  

Key Points

• FITS files contain extensions with headers
• RMF – probability photon energy E is assigned to 

particular detector channel
• ARF – effective area Vs energy
• Exposure map – effective area Vs position 

(vignetting)
• PSF – point spread function

• Background must be subtracted or modelled to study 
source
– local background
– blank sky background
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Data Analysis

• Brief and general overview of type of steps you'll 
follow when analysing X-ray data
– Data preparation
– Imaging analysis
– Spectroscopy
– Model fitting



  

Data Preparation

• Data we get from satellites has already had some 
processing performed (level 1 events list)

• Additional steps required before analysis
– Apply calibrations
– Clean and filter data

• Reprocess level 1 events with latest calibration 
products
– Correct for e.g. charge transfer inefficiency, gain

• Remove “bad” events based on grades or flags
– Eliminates some non X-ray events



  

Data Cleaning

• Data from XMM (and Chandra) are frequently 
affected by soft proton flares

• Periods of observations with extremely high bg
• Create a lightcurve of observation and filter

– Create a good time interval (GTI) file

• N.B. Low-level flares harder 
to detect

• Background spectrum during 
flares is significantly different 
than quiescent BG
– Residual flares can affect 

results



  

Image Analysis

• Typical image related tasks we might want to perform
– Make image
– Exposure correction
– Source detection
– Smoothing
– Flux estimates
– Radial profile



  

Making an Image

• Basically make image by recording N counts in each 
pixel

• Spectrum of source and bg are different
– improve SNR by selecting energy band for image

• Could make images 
in different E bands 
or time intervals

• Divide by exposure 
map to correct for 
chip gaps, 
vignetting...

bg spectrum

src+bg 
spectrum



  

Image Smoothing

• Smoothing an image by convolving it with a kernel 
(usually Gaussian)
– Helps improve contrast of faint extended features
– Improves appearance for cosmetic purposes

0 5 10

• Adaptive smoothing varies size of smoothing kernel 
to maintain minimum SNR in structures



  

Radial Profiles

• Measure the surface brightness of source in a series 
of annular bins

• Useful way to characterise distribution of extended 
sources

• Test if source is extended/resolved



  

Spectral Analysis

• Extracting spectra and fitting models key way to 
investigate source properties

• For imaging spectroscopy
– Define source (and bg) region
– Extract source and bg spectra
– Generate ARF and RMF
– Fit physical model to data 



  

Spectral Analysis

• Define src region to maximise 
SNR

• Extract spectrum – N photons 
detected in each energy bin

• Extract local or blank-sky bg

• Depending on fitting 
method, may need to 
regroup spectrum so 
minimum number counts 
per bin
– e.g. χ2 assumes 

Gaussian errors



  

Spectral Fitting

• Spectral model is “folded through” response before being 
compared to data using e.g. χ2 statistic

• e.g. ARF changes model shape, RMF blurs emission lines

• Find model parameters that give best agreement with data

• Model here is absorbed thermal plasma
– All extra-galactic sources absorbed at low-E by atomic H

unfolded model

folded model



  

High Resolution Spectroscopy

• The RMF for gratings data is more “diagonal” than for CCDs

• Gratings offer high spectral resolution (can even look like 
optical spectra!) and are ideal for studying narrow spectral 
features

• Electron transitions in ions produce absorption and emission 
lines at specific wavelengths (a quantum mechanical effect)

• Can tell us about ionization state, temperature, bulk velocity, 
velocity dispersion, column density, etc.



  

Emission Mechanisms

• Common radiative processes in high-energy astrophysics
– Synchrotron (& cyclotron) radiation

• Electrons gyrating around magnetic field lines
– Compton scattering

• Photon—electron interaction (photon loses energy)
– Inverse-Compton scattering

• Photon—electron interaction (photon gains energy)
– Thermal bremsstrahlung

• Electron—ion interaction (also called “free-free” 
radiation)

• Good book is Radiative Processes in Astrophysics by Rybicki 
& Lightman



  

Software

• ds9 – visualise images and events lists
• ciao – Chandra specific and general FITS tools
• sas – XMM specific and general FITS tools
• ftools – general FITS tools
• zhtools – general FITS tools
• funtools – general FITS tools
• xspec – spectral fitting
• isis – spectral fitting, high-resolution spectroscopy

– pvm + isis allows parallelization of data analysis
• perl / shell scripts – very useful when you need to 

repeat a data extraction / analysis task



  

Summary

• ???
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