

Science with the Imaging X-ray Polarimetry Explorer

Giorgio Matt (Univ. Roma Tre, Italy)

Information on celestial (extra-solar) sources are mostly provided by electromagnetic radiation.

They can be obtained by studying the spatial, spectral, timing and *polarization* **properties of the observed radiation.**

In particular, the polarization properties give us information on *geometry* **(in a broad sense: geometry of the emitting matter but also of magnetic and gravitational fields, of space-time, etc.): the polarization degree depends on the level and type of symmetry of the system, the polarization angle indicates its orientation.**

Our knowledge of the emission from a celestial source in any energy band is therefore incomplete without polarimetry.

However, polarimetric informations of astrophysical sources are basically missing in the X-ray band !

Polarimetry has proved very important in radio, IR and optical bands (eg. jet emission in blazars, Unification Model of AGN, ...).

In X-rays, where non-thermal emission processes and aspherical geometries are likely to be more common than at lower energies, polarimetry is expected to be vital to fully understand emitting sources.

However, only one measurement (P=19% for the Crab Nebula, indicating synchrotron emission) has been obtained so far, together with a tight upper limit to Sco X-1.

F1G. 2.-Average modulation curves obtained with both detectors at 2.6 keV during (upper curve) observations of the Crab
Nebula and during (lower curve) observations of the Crab
Nebula and during (lower curve) observations of the Earth-
occulted instrumental background.

Polarimetry has proved very important in radio, IR and optical bands (eg. jet emission in blazars, Unification Model of AGN, ...).

In X-rays, where non-thermal emission processes and aspherical geometries are likely to be more common than at lower energies, polarimetry is expected to be vital to fully understand emitting sources.

However, only one measurement (P=19% for the Crab Nebula, indicating synchrotron emission) has been obtained so far, together with a tight upper limit to Sco X-1.

These measurements have been obtained in the 70s, for the two brightest sources in the X-ray sky.

The lack, for many decades, of significant technical improvements implied that no polarimeters were put on board of X-ray satellites.

The situation has changed dramatically with the advent of polarimeters based on the photoelectric effect. Such detectors, on the focal plane of a X-ray telescope, may provide astrophysically interesting measurements for hundreds of sources (remember that polarimetry is a photon hungry technique...). The brightest specimens of all major classes of X-ray sources are now accessible!

Time is ripe for a X-ray polarimetric mission !

And, indeed, the Imaging X-ray Polarimetry Explorer (IXPE) has been selected in the NASA SMEX program for a launch in 2021

IXPE will perform spectrally-, spatially- and time-resolved polarimetry of hundreds of celestial sources to provide a breakthrough in astrophysics and fundamental physics

 (d)

(b)

POLARIZATION

The polarization vector (which is a *pseudovector***, i.e. modulus π) rotates forming an ellipse. Polarization is described by the** *Stokes parameters***:**

> $(I = \sqrt{Q^2 + U^2 + V^2})$ $V = \pm 2AB$ $U = (A^2 - B^2) \sin 2\theta$ $Q = (A^2 - B^2)\cos 2\theta$ $I = A^2 + B^2$

If V=0, radiation is linearly polarized

If Q=U=0, radiation is circularly polarized

POLARIZATION

Summing up the contributions of all photons, I increases while this is not necessarily so for the other Stokes parameters. Therefore:

$$
I_T \ge \sqrt{{Q_T}^2 + {U_T}^2 + {V_T}^2}
$$

The net polarization degree and angle aregiven by:

$$
\Pi = \frac{\sqrt{Q_T^2 + U_T^2 + V_T^2}}{I_T}
$$

$$
\chi = \frac{1}{2} \arctan \frac{U_T}{Q_T}
$$

THOMSON SCATTERING

It is the interaction between a photon and an electron (at rest), with *hν«mc²* **. It is an elastic process. The cross section is:**

$$
\sigma_T = \frac{8\pi e^2}{3m^2c^4} = 6.65 \times 10^{-25} \text{ cm}^2
$$

The differential cross section is:

$$
\frac{d\sigma_T}{d\Omega} = \frac{e^4}{m^2c^4}\sin^2\theta
$$

The scattered radiation is polarized. A 100% polarized beam gives rise to a 100% polarized scattered radiation, independently of the scattering angle. The polarization degree of a parallel beam of unpolarized radiation is:

$$
P = \frac{1 - \cos^2 \theta}{1 + \cos^2 \theta}
$$

COMPTON SCATTERING

Compton scattering radiation is polarized (*but less than Thomson scattering. Polarization degree decreases with hν/mc²in the reference frame of the electron***). A 100% polarized beam gives rise to <100% polarized scattered radiation, depending on the scattering angles.**

For an unpolarized beam, maximum polarization is less than 100%.

BREMSSTRAHLUNG

Bremsstrahlung photons are polarized with the electric vector perpendicular to the plane of interaction.

In most astrophysical situations, and certainly in case of thermal bremsstrahlung, the planes of interaction are randomly distributed, resulting in null net polarization.

For an anisotropic distribution of electrons, however, bremsstrahlung emission can be polarized.

SYNCHROTRON EMISSION

The radiation is polarized perpendicularly to the projection of B on the sky

For a power law distribution of emitting particles, the degree of polarization is Π=(p+1)/(p+7/3). This is actually un upper limit, because the magnetic field is never perfectly ordered.

IXPE'S TIMELINE

- **Proposed to NASA as a SMall EXplorer (SMEX) mission in December 2014**
- **One of the three proposals selected for an Assessment Study in August 2015**
- **Final down-selection in January 2017**
- **Launch on early 2021**
- **Baseline duration: 2 years**

IXPE WILL:

(Re)Open the X-ray polarimetry window

• Only one positive measurement so far: 19% polarization of the Crab Nebula (OSO-8)

Address key scientific questions

- What is the spin of a black hole?
- What are the geometry and magnetic-field strength in magnetars?
- Was our Galactic Center an Active Galactic Nucleus in the recent past?
- What is the magnetic field structure in synchrotron X-ray sources?
- What are the geometries and origins of X-rays from pulsars (isolated and accreting)?
- ……

Provide powerful and unique capabilities

- Integration time reduced by a factor of 100 over OSO-8 experiment
- Simultaneous imaging, spectroscopic, timing, and polarization data
- Instrument systematic effects at less than a fraction of a percent
- Meaningful polarization measurements for a large number of sources of different classes

Principal Investigator: **M. C. Weisskopf (MSFC)**

Co-Investigators: *Brian D. Ramsey, Paolo Soffitta, Ronaldo Bellazzini, Enrico Costa, Stephen L. O'Dell, Allyn Tennant, Herman Marshall, Fabio Muleri, Jeffery Kolodziejczak, Roger W. Romani, Giorgio Matt, Victoria Kaspi, Ronald Elsner, L. Baldini, L. Latronico*

- **Pegasus XL launch from Kwajalein**
- **540-km circular orbit at 0° inclination**
- **2 year baseline mission, 1 year SEO**
- **Point-and-stare at known targets**
- **Science Operations Center at MSFC**
- **Mission Operations Center at CU/LASP**
- **Malindi ground station (Singapore Backup)**

IXPE

3x Telescopes

- 3x Mirror Units (MUs) + 3x Detector Units (Dus)
- A Detectors Service Unit (DSU) with built -in redundancy
- 4 m focal length, deployable boom and X-ray shield

Performance

- Polarization sensitivity: $MDP_{99\%}$ <5.5% in 1 day for flux of 10^{-10} ergs/cm²/sec
- Energy range: 2 -8 keV
- Limit polarization: 0.5% (degree), 1 degree (angle)
- Angular resolution: better than 30 arcsec, field of view larger than 9 arcmin
- UTC synchronization: better than 250 μs
- Energy resolution: better than 25%

SCIENCE ADVISORY TEAM (chairs: R. Romani & G. Matt)

- PWN & Isolated pulsars *N. Bucciantini INAF*
-
- Accreting (galactic) BH *M. Dovciak - Czech A.S.*
-
-
-
-
-
- SNR *P. Slane Harvard*
	-
- Accreting NS & WD *J. Poutanen Univ. Turku*
- Magnetars *R. Turolla Univ Padova*
- RQ AGN & Sgr A* *F. Marin Obs. Strasbourg*
- Blazars and radiogalaxies *A. Marscher - Boston Univ.*

THE CRAB NEBULA OR THE IMPORTANCE OF IMAGING X-RAY POLARIMETRY

Radio (VLA) **Infrared (Keck) Optical (Palomar)** X-rays (Chandra)

Radio polarisation IR polarisation Coptical polarisation X-ray polarisation

?

P=19% integrated over the entire nebula (Weisskopf et al. 1978)

X-rays probe **freshly accelerated** electrons and their acceleration site.

THE CRAB NEBULA OR THE IMPORTANCE OF IMAGING X-RAY POLARIMETRY

Radio (VLA) **Infrared (Keck) Optical (Palomar)** X-rays (Chandra)

 $5^{\sf h}34.6^{\sf l}$

Pulsar

 $5^{h}34.5^{m}$

 22° 2 **NW Jet**

 $22°0$ **SE** Jet **Outer ring** Inner ring

OSO.8

Radio polarisation IR polarisation Deptical polarisation X-ray polarisation

X-rays probe **freshly accelerated** electrons and their acceleration site.

•The OSO-8 observation, integrated over the entire nebula, measured a position angle that is tilted with respect to the jets and torus axes.

•What is the role of the magnetic field (turbulent or not?) in accelerating particles and forming structures?

•IXPE imaging capabilities will allow us to measure the pulsar polarisation by separating it from the much brighter nebula emission.

•Other PWN, up to 5 or 6, are accessible for larger exposure times (e.g. Vela or the "Hand of God").

OTHER PULSAR WIND NEBULAE

1Ms IXPE observation of the MSH15-52/PSR J1513-5908 complex ("Hand of God"). Left: color X-ray image (red 1-2keV, green 2-4keV, blue 4-10keV) with superimposed polarization measurements. Right: the pulsar-dominated signal from the central aperture.

credit: Kandel, Rodriguez & Romani

SUPERNOVA REMNANTS

Map of the magnetic field

Spectral imaging allows to separate the thermalised plasma from the regions where shocks accelerate particles.

What is the orientation of the magnetic field? How ordered is it? The spectrum cannot tell...

MAGNETIZED COMPACT OBJECTS

The study of highly magnetized sources such as white dwarfs and neutron stars is definitely one of the most exciting science cases for a X-ray polarimeter.

Magnetic Cataclysmic Variables and Novae

NSs accreting matter from a companion star (millisecond pulsars, accreting X-ray pulsars)

Isolated NSs (rotation powered pulsars, magnetars)

Accretion in Magnetic Cataclysmic Variables occurs in accretion column, Main emission process is thermal bremsstrahlung, but scattering may be relevant. Polarization gives informations on the accretion mode (Matt 2004; McNamara et al, 2008) Matt 2004

ACCRETING MILLISECOND PULSARS

 $\theta = 80^{\circ} i = 20^{\circ}$

1.5

Phase

 $\overline{2}$

ACCRETING NEUTRON STARS

Opacity in highly magnetized plasma

 \Rightarrow k_⊥ ≠ k_∥

Phase-dependent linear polarization

From the (phase-resolved) swing of the polarisation angle :

Orientation of the rotation axis and inclination of the magnetic field (required for many purposes, e.g. measure of $mass/r$ adius

O-mode: the **E**-field oscillates in the **k-B** plane X-mode: the **E**-field oscillates perp. to the **k-B** plane

ACCRETING NEUTRON STARS

 $1.$

ACCRETING NEUTRON STARS

Credit: V. Doroshenko

"Fan" vs. "Pencil" beam

Meszaros et al. 1988

Magnetars are isolated neutron stars powered by huge magnetic fields $(B \sim 10^{14} - 10^{15} \text{ G}, B_{\text{qed}} \approx 4.4 \times 10^{13} \text{ G}.$

High X-ray activity (bursts, flares)

→ rapid magnetic field reconfiguration

Instability may develop in the core, crust, magnetosphere (reconnection)

 \rightarrow highly twisted, non dipolar magnetic field

X-ray emission highly polarized

Spectral analysis alone can not disambiguate physical parameters and pinpoint the source geometry

Polarimetry can:

- Map the magnetic field
- Probe the magnetosphere physical parameters
- Probe "vacuum birefringence"

Folgerungen aus der Diracschen Theorie des Positrons.

Von W. Heisenberg und H. Euler in Leipzig.

Mit 2 Abbildungen. (Eingegangen am 22. Dezember 1935.)

Aus der Diracschen Theorie des Positrons folgt, da jedes elektromagnetische Feld zur Paarerzeugung neigt, eine Abänderung der Maxwellschen Gleichungen des Vakuums. Diese Abänderungen werden für den speziellen Fall berechnet, in dem keine wirklichen Elektronen und Positronen vorhanden sind, und in dem sich das Feld auf Strecken der Compton-Wellenlänge nur wenig ändert. Es ergibt sich für das Feld eine Lagrange-Funktion:

PHYSICAL REVIEW

VOLUME 82, NUMBER 5

JUNE 1, 1951

On Gauge Invariance and Vacuum Polarization

JULIAN SCHWINGER Harvard University, Cambridge, Massachusetts (Received December 22, 1950)

This paper is based on the elementary remark that the extraction of gauge invariant results from a formally gauge invariant theory is ensured if one employs methods of solution that involve only gauge covariant quantities. We illustrate this statement in connection with the problem of vacuum polarization by a prescribed electromagnetic field. The vacuum current of a charged Dirac field, which can be expressed in terms of the Green's function of that field, implies an addition to the action integral of the elec-

a spin zero neutral meson arising from the polarization of the proton vacuum. We obtain approximate, gauge invariant expressions for the effective interaction between the meson and the electromagnetic field, in which the nuclear coupling may be scalar, pseudoscalar, or pseudovector in nature. The direct verification of equivalence between the pseudoscalar and pseudovector interactions only requires a proper statement of the limiting processes involved. For arbitrarily varying fields, perturbation methods can

$$
\mathcal{L} \simeq \frac{1}{2} (\mathbf{E}^2 - \mathbf{B}^2) + \frac{2\alpha_{\text{QED}}}{45} \frac{(\hbar/mc)^3}{mc^2} [(\mathbf{E}^2 - \mathbf{B}^2)^2 + 7(\mathbf{E} \cdot \mathbf{B})^2]
$$

Expanding the action for a uniform field plus
a small photon field:

$$
\mathbf{E} = \mathbf{E}_0 + \delta \mathbf{E}, \ \mathbf{B} = \mathbf{B}_0 + \delta \mathbf{B}
$$

We obtain:
$$
n_{\parallel} - n_{\perp} = \frac{\alpha_{\text{QED}}}{30\pi} \left(\frac{B}{B_{\text{QED}}}\right)^2 \sin^2 \theta
$$

Where is θ the angle between the direction of propagation and the external field and

$$
B_{\text{QED}} = \frac{m_e^2 c^3}{\hbar e} = 4.4 \times 10^{13} \text{ G}
$$

$$
\mathcal{L} \simeq \frac{1}{2} (\mathbf{E}^2 - \mathbf{B}^2) + \frac{2\alpha_{\text{QED}}}{45} \frac{(\hbar/mc)^3}{mc^2} [(\mathbf{E}^2 - \mathbf{B}^2)^2 + 7(\mathbf{E} \cdot \mathbf{B})^2]
$$

\n**Example 21**
\n**Example 3**
\n**Example 4**
\n**Example 4**<

Effect is substantial in the vacuum near highly magnetized neutron stars

Magnetar is a neutron star with magnetic field up to 10¹⁵G

- Billion times the strongest laboratory field
- Non-linear QED predicts magnetized-vacuum birefringence
- Can exclude QED-off at better than 99% c.l.

Credit: R. Taverna e R. Turolla

Done et al. 07

MICROQUASARS

X-ray polarimetry can provide answers to several key problems: *The role of the jet - The geometry of the corona - The spin of the BH*

MICROQUASARS: THE GEOMETRY OF THE HOT CORONA

Pol Degree between 2-8 keV (6-500, mdot01, MBH10) tan1 kT100 - 20 bins

The geometry of the hot corona is unknown. Emission is expected to be polarized if the corona OR the radiation field are not spherical (Schnittman & Krolik 2010, Behestipour et al. 2017, Tamborra et al. 2018)

Courtesy: Francesco Tamborra

MICROQUASARS: THE ROLE OF THE JET

Corona emission is predicted to be less than 10%.

Much larger polarization degrees are expected for jet emission

MICROQUASARS: THE SPIN OF THE BLACK HOLE

- **For an accreting Galactic BH in the soft state**
	- Scattering polarizes the thermal disk emission
	- Polarization angle rotates due to GR effects
		- Polarization rotation is greatest for emission from inner disk
		- Inner disk is hotter, producing higher energy X-rays

Orbiting spot with: a=0.998; R=11.1 Rg; i=75.5 deg

(Phase=0 when the spot is behind the BH)

§ 38 The PA of the net (i.e. phase-averaged) radiation is also rotated!

MICROQUASARS: THE SPIN OF THE BLACK HOLE

- **For an accreting Galactic BH in the soft state**
	- Scattering polarizes the thermal disk emission
	- Polarization angle rotates due to GR effects
		- Polarization rotation is greatest for emission from inner disk
		- Inner disk is hotter, producing higher energy X-rays

 Rotation of the polarization angle with energy

Courtesy: Michal Dovciak

THE SPIN OF THE BLACK HOLE

For an accreting Galactic BH in the soft state

- Scattering polarizes the thermal disk emission
- Polarization angle rotates due to GR effects
	- Polarization rotation is greatest for emission from inner disk
	- Inner disk is hotter, producing higher energy X-rays

Why another method, besides the three ones already in use?

 Rotation of the polarization angle with energy

 J1655-40:

- **QPO: a = J/Jmax= 0.290±0.003**
- **Continuum: a = J/Jmax= 0.7±0.1**
- **Iron line a = J/Jmax 0.95**

THE SPIN OF THE BLACK HOLE

For an accreting Galactic BH in the soft state

- Scattering polarizes the thermal disk emission
- Polarization angle rotates due to GR effects
	- Polarization rotation is greatest for emission from inner disk
	- Inner disk is hotter, producing higher energy X-rays

 Rotation of the polarization angle with energy

200 ks IXPE observation of GRS1915+105

ACTIVE GALACTIC NUCLEI

RADIO-QUIET ACTIVE GALACTIC NUCLEI

In AGN the primary X-ray emission is due to Inverse Compton by electrons in a hot corona of the UV/soft Xray disc photons. It is likely to be significantly polarized (e.g. Haardt & Matt 1993, Poutanen & Vilhu 1993).

Part of the primary emission illuminates the disc and is reflected (and polarized) via Compton Scattering

RQ AGN: THE HOT CORONA

The geometry of the hot corona is unknown. Emission is expected to be polarized if the corona OR the radiation field are not spherical (Schnittman & Krolik 2010, Behestipour et al. 2017, Tamborra et al. 2018)

Example: polarization degree expected for IC 4329A (Brenneman et al. 2014), calculated with the MoCA Comptonization code (Tamborra et al. 2018). Courtesy: Francesco Tamborra

RQ AGN: THE SPIN OF THE BH

Reynolds et al. 1997

The exact values depend on the actual geometry of the system and on the polarization degree of the primary radiation.

Polarization of reflected (continuum) radiation is large, up to 20% (Matt et al. 1989) assuming isotropic illumination, a plane-parallel reflecting slab and unpolarized illuminating radiation.

Matt et al. 1989

Breaking of the symmetry due to SR (Doppler boosting) also causes a rotation of the PA with respect to the Newtonian case. Changes in the illumination properties (e.g. in the height of the lamp-post) will cause changes in the total PA, which is therefore likely to be time- (and flux-) dependent. Variations of the height have been claimed in several AGN (e.g. Miniutti et al. 2003, Parker et al. 2014).

RQ AGN: THE SPIN OF THE BH

Variation of h with time implies a time and flux variation of the degree and angle of polarization.

The effect depends also on the BH spin.

Dovciak et al. (2011)

RQ AGN: REFLECTION OR ABSORPTION?

The relativistic reflection interpretation of the broad feature often seen in Seyfert galaxies has been challenged: complex absorption?

Polarimetry can distinguish between the two models

Marin et al. (2012)

RQ AGN: ORIENTATION OF THE TORUS

Geometry of the torus:

the polarization angle will give us the orientation of the torus, to be compared with IR results, and with the ionization cones (Goosmann & Matt 2011)

Raban et al. (2009)

RQ AGN: ORIENTATION OF THE TORUS

Goosmann & Matt (2011)

BLAZARS ...

Blazars are Active Galactic Nuclei with a jet directed towards us

Due to a Special Relativity effect (aberration), the jet emission dominates over other emission components.

BLAZARS ...

In inverse Compton dominated Blazars, multi-λ polarimetry observations can determine:

- **the composition of the jet** (hadronic vs. leptonic)
- **the origin of the seed photons** Synchrotron-Self Compton (SSC) \rightarrow The polarization angle is the same as for the synchrotron peak.

External Compton (EC) \rightarrow The polarization angle may be different.

The polarization degree is related to the electron temperature in the jet.

BLAZARS ...

X-ray Blazars, multi-wavelength polarimetry probes the structure of the magnetic field along the jet.

Models predict a larger and more variable polarisation in X-rays than in the optical.

Coordinated multi-wavelength campaigns are crucial for blazars.

Such campaigns (including polarimetry) are routinely organised and it will be easy for a X-ray polarimeter to join them.

… AND RADIOGALAXIES

Includes effects of dilution by unpolarized diffuse emission

WAS THE GC ACTIVE A FEW CENTURIES AGO?

- **Galactic Center molecular clouds (MC) are known X-ray sources**
	- Are MCs reflecting X-rays from Sgr A*? (supermassive black hole in the GC)
		- X-radiation would be *highly polarized* perpendicular to plane of reflection and indicates the direction back to Sgr A*
		- $-$ Sgr A* X-ray luminosity was 10⁶ larger ≈ 300 years ago

WAS THE GC ACTIVE A FEW CENTURIES AGO?

- **Galactic Center molecular clouds (MC) are known X-ray sources**
	- Are MCs reflecting X-rays from Sgr A*? (supermassive black hole in the GC)
		- X-radiation would be *highly polarized* perpendicular to plane of reflection and indicates the direction back to Sgr A*
		- $-$ Sgr A* X-ray luminosity was 10⁶ larger ≈ 300 years ago

GAMMA-RAY BURSTS

GAMMA-RAY BURSTS

X-ray polarimetry can answer several open questions:

- emission mechanism?
- the role of the magnetic field?
- composition of the expanding jets of GRBs during the late-time flares, plateau or rebrightening phases?

FUNDAMENTAL PHYSICS

Observing a sizeable sample of blazars at different redshifts, IXPE can search for energy-dependent birefringence effects.

They may put tighter constraints on QG theories.

Polarization variability detected for X-ray background sources of large, significantly magnetized regions (e.g. clusters of galaxies) may indicate the presence of axion-like particles.

These are one possible ingredient of dark matter.

FUNDAMENTAL PHYSICS

Observing a sizeable sample of blazars at different redshifts, IXPE can search for energy-dependent birefringence effects.

They may put tighter constraints on QG theories.

Polarization variability detected for X-ray background sources of large, significantly magnetized regions (e.g. clusters of galaxies) may indicate the presence of axion-like particles.

These are one possible ingredient of dark matter.

MISCELLANEA

- Tidal Disruption Events: jet emission?
- QPO: Precession of the accretion flow

• ULX: geometry of the accretion flow

Mirror based on grazing incidence reflection

• Total collecting area: >700 cm² at 3 keV

Photoelectric polarimeter based on GPD design

- Include a Filter & Calibration wheel with
	- Filters for specific observations (very bright sources, background)
	- Calibrations sources (polarized and unpolarized, gain)

Mirror based on grazing incidence reflection

• Total collecting area: >700 cm² at 3 keV

Photoelectric polarimeter based on GPD design

- Include a Filter & Calibration wheel with
	- Filters for specific observations (very bright sources, background)
	- Calibrations sources (polarized and unpolarized, gain)

Real modulation curve derived from the measurement of the emission direction of the photoelectron.

Residual modulation for unpolarized photons.

IXPE

3x Telescopes

- 3x Mirror Units (MUs) + 3x Detector Units (Dus)
- A Detectors Service Unit (DSU) with built -in redundancy
- 4 m focal length, deployable boom and X-ray shield

Performance

- Polarization sensitivity: $MDP_{99\%}$ <5.5% in 1 day for flux of 10^{-10} ergs/cm²/sec
- Energy range: 2 -8 keV
- Limit polarization: 0.5% (degree), 1 degree (angle)
- Angular resolution: better than 30 arcsec, field of view larger than 9 arcmin
- UTC synchronization: better than 250 μs
- Energy resolution: better than 25%

OBSERVING PLAN

OBSERVING PLAN

OBSERVING PLAN

IXPE will reopen the X-ray polarimetry window, providing crucial and unique information on the physics and morphology of most classes of X-ray sources