

Sensors and Actuators for ET

INFN Napoli, INFN "Tor Vergata", INFN Padova and INFN Roma

(E. Majorana)

- Payload local sensing
 - General Scheme
 - Sensitivity for different implementations
- Payload actuators
 - Proposed Implementation;
 - Actuator characterization;

Definition and Motivation

- The local sensing system is used to measure the payload position with respect to a local reference system
- It is used for different tasks:
 - Reduce the mirror motion amplitude to easily engage automatic controls;
 - Recover the angular position of the mirror and set it to the last "locked" condition;
- Since such sensing is performed with respect to the ground, the sensitivity is intrinsically limited by the seismic noise.

General Scheme

- The proposed architecture is based upon the use of optical levers:
 - Probe beam;
 - Position detector (PSD or Quadrant photodiode);
- Same scheme on test mass and marionette
- A single beam mixes rotation and translation; then an uncoupling method must be applied:
 - Optical uncoupling or Geometrical uncoupling;

2nd ET General Workshop Erice - 14-16 October 2009

Basic Relations

- The sensitivity depends on the detector but also on the uncoupling system;
- Optical/Geometrical gain:
 - z: mass translation, θ : mass rotation
 - $d_z = G_z z, d_\theta = G_\theta \theta$
 - d_q: beam displacement on the detector for the q degree of freedom;
- Detector sensitivity
 - $V_q = S_q q$
 - S_q is the sensitivity in V_n/m (V_n : normalized voltage)

Basic Relations

• Comparison of different sensitivity:

Gain	Opt.Uncoupling	Geom. Uncoupling
G _z	(2 f sin α)/(L ₂ -f)	2 sin α
G _θ	2 f	2 L ₂
Sensitivity	PSD	Quadrant
Sq	2/L	(8/π) ^{1/2} /w

- In table:
 - L: full detector size;
 - w: beam waist on the detector
 - f: focal length (if optical uncoupling)

Basic Relations

- The sensitivity for the quadrant detector was calculated for an "infinite" detector with no gap;
- More detailed calculations, taking into account these characters, show change in sensitivity;

Sensitivity of a quadrant photodiode with L=3 mm, for different values of gap and different waist on the detector

Main limiting noises

• The fundamental limit is the shot noise:

•
$$q_{shot} = \sqrt{\frac{2h\nu}{\eta P}} \frac{1}{S_q G_q}$$

- The electronic noise mainly affects the lower frequency band (models depend on the electronic layout);
- The quantization noise is not considered since it can be easily lowered under the shot noise by using high resolution ADC and oversampling;

Possible architecture for ET

- Three options have been presented as possible implementations for ET;
- They common constrains are:
 - Probe beam(s) guided into the vacuum chamber by optical fibers;
 - No active components inside the cold shields;
 - Beam(s) path(s) reduction;
- The solutions under investigations are:
 - 1. Internal uncoupling optics and detectors;
 - 2. Internal optical uncoupling and external detectors;
 - 3. Geometrical uncoupling and external detectors;

Local Sensing

Option 1

- The first option is the simplest:
 - Advantages:
 - Reduced number of beams inside the chamber; Cold shield
 - Reduced number of apertures on the cold shields;
 - Disadvantages:
 - Space for uncoupling system inside the vacuum chamber;
 - Photodiodes need to stay at room temperature place
 - Sensitivity calculation for plausible geometrical values:
 - $\alpha = \pi/3$, L₂=75 cm, L=5mm, f=20 cm, P=1 mW, PSD detectors
 - Gives the following values:
 - S=364/m, $G_z=0.63$, $G_{\theta}=0.2m$, $L_{3,z}=0.27m$, $L_{3,\theta}=0.2m$
 - $z_{shot} = 2 \cdot 10^{-10} \text{m/Hz}^{1/2}, \theta_{shot} = 2 \cdot 10^{-10} \text{rad/Hz}^{1/2}$

Vacuum Fiber

Local Sensing

Option 2

- The second option requires image conduits:
 - Advantages:
 - Reduced number of beams inside the chamber;
 - Reduced number of apertures on the cold shields;
 - Detectors outside the chamber;
 - Disadvantages:
 - Couplers to guide images outside;

- Sensitivity calculation for plausible geometrical values:
 - $\alpha = \pi/3$, L₂=25 cm, L=5mm, f=10 cm, P=1 mW, PSD detectors
- Gives the following values:
 - S=364/m, $G_z=1.15$, $G_{\theta}=0.1m$, $L_{3,z}=0.17m$, $L_{3,\theta}=0.1m$
 - $z_{shot} = 1.10^{-10} \text{m/Hz}^{1/2}, \theta_{shot} = 6.2 \cdot 10^{-10} \text{rad/Hz}^{1/2}$

Option 3 The third option requires fiber tapers: - Advantages: - Simpler setup inside the vacuum chamber; - Disadvantages: - Double the number of the probe beams; - More (and larger) aperture in the shields; - Fiber Taper

4 Photodiodes

Light guide

- Sensitivity calculation for plausible geometrical values:
 - $\alpha = \pi/3$, L₂=75 cm, P=1 mW
 - Tapers modeled as quadrant: L=5 cm, w=1 cm, Gap=1mm
- Gives the following values:
 - S=172/m, G_z =1.73, G_{θ} =1.5m
 - $z_{shot} = 2.1 \cdot 10^{-10} \text{m/Hz}^{1/2}, \theta_{shot} = 7.4 \cdot 10^{-10} \text{rad/Hz}^{1/2}$

2nd ET General Workshop Erice - 14-16 October 2009

Options 2-3

- Technical solutions for options 2 and 3 exist;
- In the sensitivity calculation possible signal degradation due to the presence of image conduits or tapers was neglected (to be checked);

Fiber Tapers

Noise Comparison

• Final sensitivity for both tilt and translation in the three configurations

Option	Z Sensitivity (1/m)	θ Sensitivity (1/rad)
1	229	145
2	420	73
3	298	258

- Electronic and shot noise for translations and rotation for all the options;
- Electronic noise calculated using standard "Virgo" electronics;

Remarks

- Sensitivity (and Noises) are not very different for different options: within a factor 3;
- Of course other solutions can be investigated, but no major changes are expected;
- Moreover, in any configuration, the limiting noise will be the seism acting on the sensing system. The design of each option must be updated according to the seismic level in underground sites.
- The thermal load of such sensing system are expected to be very low: most of the injected power is sent to the detectors through non conductive device close to the thermal shield.
- A small fraction of the optical lever power (< 1mW in this calculations) is expected to be absorbed by the test mass.

A configuration proposal

- The solution under investigation is:
 - Ground referenced electrostatic actuators for test mass damping and lock acquisition;
 - Standard coil magnets actuators at the marionette level for mirror steering and steady locking;
- The idea is to switch off completely the actuation on the test mass after the lock acquisition

Actuator Characterization

- Mirror actuator design can be based on a numerical model developed in the past and recently confirmed by direct measurements.
- Experimental set-up:
 - Suspended dielectric mirror under vacuum
 - Optical lever for position monitor
 - Ground based actuator

Actuator Characterization

• The actuation driving signal is in the form:

 $V = \sqrt{A_{DC} + A_{AC} \cos \omega t} \sin \omega_M t$

- where ω_M is a modulation frequency
- The response of the actuator is:

 $F = \alpha V^2 + \beta V$

- where α is the electrostatic coupling and β is proportional to the stray charges present on the mirror;
- the presence of the modulation makes the last contribution to the force equal to zero

Actuator Characterization

• Effectiveness of this technique experimentally checked.

• Only measurements performed with modulation are in agreement between them (and with the model) when repeated in different conditions.

- A preliminary study of the thermal input through holes in the thermal shields, strongly integrated with the overall cryostat design, is mandatory and will be performed as a first step.
- A preliminary estimation of local sensor sensitivity and noise is available with reasonable (in terms of implementation) parameters.
- A detailed study will follow to characterize the effect of image conduits or fiber taper on transmitted beams in cryogenic environment.
- A working model to design the last stage actuators is available and tested on real data.
- A plan for systematic cryogenic tests on magnets is started.
- Electrostatic actuators and, refined by modulation driving technique, are effective and promising; actuator geometry is the next step.
- The thermal load of electrostatic actuation does not seem crucial since the actuator is used only during the lock acquisition.