

INFN

Istituto Nazionale di Fisica Nucleare

E.T. AND CRYOGENICS

F. Ricci

INFN Roma University of Rome Sapienza

Erice, 15th of October 2009 Ettore Majorana Centre for Scientific Culture

ET EINSTEIN TELESCOPE

 $P_{coat}^{cryo} \approx 20 P_{coat}^{virgo}$

- At cryogenic temperatures, the thermal conductivity increases and consequently reduces thermal gradients on the coating;
- Refraction index variation with temperature is very small at low temperature;
- The <u>thermal lensing is likely to be zero</u> because the thermal expansion coefficients tend to zero at cryogenic temperatures;

Mirror cooling: the LCGT approach

Thermal Input

✓ Conduction from the super attenuator suspension \checkmark Radiation from the holes of the shields ✓ Conduction from the shield supports ✓ Conduction through the electric cables ✓ Radiation from the shields ✓ Scattered Laser light ✓ Conduction trough the residual gas (thermal diffusion)

Refrigeration power path to the mirror

(T.Tomaru, Fig.1 in Chap.13, Technical Report of LCGT)

LCGT heat flow estimation

(T.Tomaru, Fig.2 in Chap.13, Technical Report of LCGT)

A POSSIBLE SCENARIO FOR E.T.

~1.5 m

Rough_(optimistic) evaluation of thermal inputs Payload chamber: φ ~1.5 m h~3 m - 4 K shield (25 layers s.u.) ~ 0.4 W - 77 K shield (75 layers s.u.) ~35 W

Auxiliary tower: ϕ ~1 m h~2 m - 4 K shield (25 layers s.u.) ~ 0.3 W -77 K shield (75 layers s.u.) ~ 27 W

Cryo trap: ϕ ~1.2 m L_{4K}~ 100 m (L_{77K} > L_{4K}) - 4 K shield (25 layers s.u.) ~ 10 W -77 K shield (75 layers s.u.) ~ 1 kW (relaxing the thermal input requirement from the hot hole we can assume L_{4K}~ 50 m)

The ILIAS-STREGA lesson: the cool down of a 250 kg payload (January 5th, 2009)

During the cooling several times the PT cryo-coolers were stopped, because of failure in the water refrigeration system of the compressors.

The final mirror temperature results to be ~30 K while the cold head is at 15 K.

ET – Thermal noise contribution

Hz

Fig. 7. Cooling power of 2nd stage with ³He as working fluid; 1st stage: CP6000 compressor; settings optimised for minimum temperature at $Q_1 = Q_2 = 0$; average working pressure: $p_2 = 10.1$ bar (solid line) and $p_2 = 9.2$ bar (dashed line). Inset: cooling power below 2.2 K. Cryogenics 44, 809-816 (2004) <u>A ³He pulse tube cooler operating down to 1.3 K</u> <u>N. Jiang, U. Lindemann, F. Giebeler, G. Thummes</u>

University of Giessen & TransMIT D-35392 Giessen, Germany

➤Two gas circuits and two compressor :more noise

➤A new design is needed for increasing the refrigeration power

PT

 \bigcirc

λ

Fig. 3. Schematic of the two-stage pulse tube cooler with independent gas circuits; 1 and 2 refer to the 1st and 2nd stage, respectively; C1, C2: compressors; R1, R2: reservoirs; PT1, PT2: pulse tubes; RG1: regenerator 1; RG2H, RG2L: warm and cold section of regenerator 2, respectively; CP1, CP2: cold platforms; HXP: precooling heat exchanger, O1, O2: orifice valves; D1, D2: second-inlet valves.

Temperature behavior during the transfer function measurements,

oThe sensor measure the relative displacement of the suspended mass refereed to its support.

oThe sensitivity depends on the gap which changes from room to low temperature.

• The sensor support and clamp are made of various materials. Large incertitude in the absolute calibration. *Work in progress to reduce it*

OMPARISON BETWEEN HOT AND COLD PAYLOAD

PT410 Harmonics: 1.412 Hz, 2.824 Hz, 4.236 Hz, 5.641 Hz, 7.060 Hz, 8.8472 Hz PT60 Harmonics: 2 Hz, 4 Hz, 6 Hz, 8 Hz

In Rome we measured on a similar Sumitomo PT at 4 K the displacement noise of the cold head: 29 μ m/(Hz)^{1/2} @ 1Hz The PT peaks observed in the payload spectrum are in the range ~ 0.2 - $2 \,\mu m/(Hz)^{1/2}$ 15

How to limit the refrigerator noise: the Vibration Free Cryostat

S. Caparrelli, et al. Rev. of Sci. Inst. 77, 095102 (2006).

HILL

Industrial interest for low vibration Cryocooler Gas pressure pulses resulting in an elastic deformation of the thin wall tubes at the fundamental driving frequency and its harmonics

Vibration generation in a pulse tube refrigerator S.V. Riabzev , A.M. Veprik, H.S. Vilenchik, N. Pundak -Ricor Cryogenic and Vacuum Systems, En Harod Ihud, 18960, Israel

Cryogenics 49 (2009) 1-6

✓ Geometrical factor
 (U-shape against cylindrical symmetry)
 ✓ Tube stiffness(fundamental modes)
 ✓ Pressure dependence

Cold head vibrations of <u>a **COaxial**</u> Pulse Tube refrigerator

T. Koettig, F. Richter, C. Schwartz, R. Nawrodt, M. Thürk and P. Seidel

- CERN, AT-CRG-CL, CH-1211 Geneva 23, Switzerland 2

-- Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik Jena, Germany

Cryocooler 15 - Int. Cryocool. Conf. Inc., Boulder

Cold head vibration 9 μm in the vertical direction, 1.5 $\,\mu m\,$ in the horizontal one

Figure 5. Comparison of the vibration spectra at 10K at a pressure difference of 0.77 MPa. The diagram shows a vibration spectrum in the x-direction perpendicular to the coldfinger axis and a vibration spectrum parallel to the coldfinger axis (z-direction).

Other non-alternative ideas

ULTRA-LOW VIBRATION PULSE TUBE CRYOCOOLER WITH A NEW VIBRATION CANCELLATION METHOD

SUZUKI, Toshikazu High Energy Accelerator Research Organization

Presented at CEC – ICMC '05 – Keystone, Colorado- USA

The basic idea: Utilize the vibration as counter force With the constraint to adopt a compact configuration

Pulse tube cryocooler with self-cancellation of cold stage vibration Suzuki T., Tomaru T., Haruyama T., Shintomi T., Sato N., Yamamoto A., Ikushima Y., Li R. High Energy Accelerator Research Organization, Tsukuba-shi, Ibaraki-ken 305-0801, Japan Advanced Research Institute for the Sciences and Humanities Nihon University, Chiyoda-ku, Tokyoto 102-0073, Japan Sumitomo Heavy Industry Inc., Nishitokyo-shi, Tokyo-to 188-8585, Japan ULTRA-LOW VIBRATION PULSE TUBE CRYOCOOLER WITH A NEW VIBRATION CANCELLATION METHOD

SUZUKI, Toshikazu High Energy Accelerator Research Organization

ULTRA-LOW VIBRATION PULSE TUBE CRYOCOOLER WITH A NEW VIBRATION CANCELLATION METHOD

SUZUKI, Toshikazu High Energy Accelerator Research Organization

Presented at CEC – ICMC '05 – Keystone,

Test carried on with 2-4-6 tubes

Number of tubes	Cold head vibration [µm]
2	3.4
4	013
6	0.08

Why not cryogenic liquids? Refrigerator versus cryogenic liquids

Refrigerator	Super fluid Liquid
 Very long operational time Stable temperature Limited maintenance Poor impact on safety for the underground laboratory 	 Higher refrigeration power Quiet operation (see GW resonant antennas) Highest thermal conductivity Extremely low viscosity
Mechanical vibrations	
 Acoustic noise through the high pressure gas line Electricity and water plant Limited cooling power 	 Liquefaction facility Potential danger in the tunnel Fluid transport Handling of evaporated gas

 The most quiet and reliable approach for producing He II at atmospheric pressure
 Massive use of the technique @ LHC The He II heat exchanger q= h_κ ΔT_s

 h_{K} =Kaptiza resistance q= heat flux ΔT_{s} = temperature step at the interface

$$5.5 \times 10^7 \left(\frac{T^3}{M\Theta_D{}^3}\right) < h_K$$

$$h_{K} < 4T^{3} \frac{\pi^{4}}{10\hbar} \left(\frac{k_{B}}{\Theta_{D}}\right)^{2} \left(\frac{3N}{4\pi V}\right)^{2/3}$$

dQ/dt ~ 10 W

$S_{h.e.} \sim 10 \text{ cm}^2$

The heat extraction

 Silicon doped 38
 Aluminum (purity 99.9999%)

CONCLUSION

- **n** Cryo vibration:
 - Implement the VFC scheme with an improved attenuation and additional cancellation method
 - **n** Keep open the option of using cryo fluids
- **n** Cooling time :
 - **n** We nee to reduce it
 - **n** use of the He gas exchange, a complex solution in a real GW interferometer
 - **n** Telescopic system to transmit the refr. power via solid
- **n** Actuator dissipation:
 - **n** Electrostatic actuators
 - **Bring the marionette down to 10 K and use** superconductors

We need to EXPLORE all these options and more.....