

Jessica Dück, Nico Lastzka, •Sebastian Steinlechner, Roman Schnabel and Karsten Danzmann

Absorption Measurements on Silicon

Max Planck Institut for Gravitational Physics AG Quantum Interferometry

Centre for Quantum Engineering

and Space Time Research

Institute for Gravitational Physics, Leibniz Universität Hannover and Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Callinstr. 38, 30167 Hannover, Germany

- Mid-frequency detection band limited by thermal noise
- Various noise sources are proportional to T or even T²
- Cryogenic techniques could reduce noise level drastically

Thermorefractive noise: $S_{TR}(f) \propto \beta^2 k_B T^2$

Thermoelastic noise:

$$S_{TE}(f) \propto \alpha^2 k_B T^2$$

Substrate brownian noise: $S_{bulk}(f) \propto k_B T$

Fused silica

- + well known material
- + excellent optical properties (Suprasil SV311: 0.25ppm/cm absorption @ 1064nm)
- high damping at low temperatures (Debye peak)
 - \rightarrow not suitable for cryogenic detectors

R. Nawrodt, PhD thesis

Max Planck Institute for Gravitational Physics AG Quantum Interferometry

Centre for Quantum Engineering and Space-Time Research

- Crystalline silicon available in large dimensions 450mm wafers will be introduced in upcoming years
- "Industrial quality" is already extremely pure

Uni Jena

wikipedia.de

www.squeezed-light.de

Max Planck Institute for Gravitational Physics AG Quantum Interferometry

Centre for Quantum Engineering and Space-Time Research

Q values exceeding 10⁸ have been measured

R. Nawrodt, PhD thesis, Uni Jena

A. Schröter, PhD thesis, Jena

 Very high thermal conductivity:
 > 10 W/(cm K) between 10K and 100K (compare with 10⁻³..10⁻² W/(cm K) for glass, 3.9 W/(cm K) for copper @ 300K)

Low thermo-optic coefficient $dn/dT \rightarrow low$ thermo-refractive noise

- Thermal expansion higher than in fused silica at room temperature
- two zero crossings (18K and 125K) \rightarrow vanishing thermoelastic noise

Thermoelastic noise: $S_{TE}(f) \propto \alpha^2 k_B T^2$

Hull, Properties of Crystalline Silicon, 1998

- Absorption coefficient orders of magnitude too high at 1064nm
- Transparency window between 1.4µm and 2.5µm
- No measurement data available in this window
- Measurements up to now mainly motivated by solar cell research, low absorption regime not interesting

Keevers/Green, 1995

Is the absorption coefficient α really as low as 10⁸/cm?

Directly measuring $I = I_0 e^{-\alpha x}$ is not sensitive enough

Measure effects of temperature change due to absorption: dn/dT

- Mirage method (thermal lensing)
- Our new method: "thermal kerr" effect
- Can only measure $\alpha \frac{dn}{dT}$, need to know various material constants
- High power needed for sufficient temperature increase
 → power built-up in high finesse cavity

- High finesse cavity is scanned with varying speeds over one Airy peak (with PZT or by tuning the laser frequency)
- Both scan directions used

 dn/dT introduces additional phase shift depending on scan direction, deforming cavity Airy peaks

- Simulation program calculates time-dependant temperature profile inside cavity
- (almost) analytical model as presented by Hello & Vinet

- Tested measurement with ring mode-cleaning cavity (F ~ 10000), absorption coming from mirror coatings
- Very good agreement between experimental and simulated data
- Simulation parameters yield absorption coefficient

- Monolithic silicon cavity
 - 10cm diameter, 6.5cm length
 - Residual boron doping < 10¹² / cm⁻³
 - Mirror ROC 1m
 - estimated round-trip absorption 1ppm
- HR coated with SiO₂/Si
 - 170ppm transmission
 - Finesse F ~ 18500
- First measurements coming soon

• Residual doping will probably contribute most to the absorption:

$$\Delta \alpha = \frac{q^3 \lambda^2}{4 \pi^2 c^3 n \epsilon} \cdot \left(\frac{N_e}{m_{cc}^2 \mu_e} + \frac{N_h}{m_{ch}^2 \mu_h}\right) \approx 3 \cdot 10^{-7} / cm$$

 With sensible assumptions for laser power and coating properties, absorptions in the 0.01ppm/cm regime (10⁻⁸/cm) should be measurable

- Currently validating measurement method
- First silicon measurements soon
- Confirm measurements with different method (Mirage?)

- Up to 2W cw, singlemode, PM output commercially available
- LZH builds fibre amplifier with 10W output, 100W expected in 2-3 years

www.squeezed-light.d

Leibniz

Universität

Hannover

• Fast scans are unaffected by absorption, ringing can be used to find correct cavity parameters (mirror reflectivities)

Absorption coefficient drops with temperature

- T-structure gratings act as monolithic mirrors
- No coating thermal noise
- R > 99% demonstrated

