T. Eberle, M. Mehmet, S. Steinlechner, H. Vahlbruch, A. Khalaidovski, K. Danzmann and R. Schnabel

Generation of Squeezed Light at 1064nm and 1550nm

Max Planck Institut for Gravitational Physics AG Quantum Interferometry

Centre for Quantum Engineering and Space Time Research

Leibniz Universität Hannover

Institute for Gravitational Physics, Leibniz Universität Hannover and Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Callinstr. 38, 30167 Hannover, Germany

www.squeezed-light.de

Max Planck Institute for Gravitational Physics AG Quantum Interferometry

What do we need?

- A nonlinear crystal like
 - Lithium Niobate (MgO:LiNbO₃)
 - Periodically Poled Potassium Titanyl Phosphate (PPKTP)
- A pump beam at half the wavelength
- A resonator
 - To have a well defined mode

Lithium Niobate (MgO:LiNbO₃):

type I phasematching

- + well-proven material with excellent results (10dB squeezing; audio band squeezing)
- very high phase matching temperature @ 1550nm (problems with stabilization, gradients, ...)

K. Betzler, Osnabrück

Periodically Poled Potassium Titanyl Phosphate (PPKTP):

quasi phasematching

- + higher nonlinearity
- + adjustable phase matching temperature
- grey-tracking issues
 - (though maybe not at 775nm/1550nm)

www.squeezed-light.de

Centre for Quantum Engineering and Space-Time Research

1064nm

Well known technology:

- Non planar ring oscillator (NPRO)
- Nd:YAG

1550nm

Technology: Erbium doped fiber

Commercially available:

- Reliable high power lasers for telecommunication purposes
- 1-2W polarization maintaining

www.squeezed-light.de

Max Planck Institute for Gravitational Physics AG Quantum Interferometry

Centre for Quantum Engineering and Space-Time Research

Sideband frequency: 5 MHz

Leibniz

10 2

100

Universität

Hannover

Results: Squeezing / Antisqueezing

1064nm

Sideband frequency: 5 MHz

1550nm

- More squeezing possible with further investigation (e.g. lower losses)
- Audio frequencies feasible by applying same techniques as at 1064nm

- Squeezed light can reduce shot-noise in interferometers
- Squeezed light is generated in nonlinear crystals: MgO:LiNbO₃ or PPKTP
- Squeezing is not only available at 1064nm but also at 1550nm:
 - 11.5dB @ 1064nm
 - 6.4dB @ 1550nm

