PERSPECTIVES OF HADRON SPECTROSCOPY AT LHCb [ARXIV:1808.08865]

> Marco Pappagallo University of Edinburgh

On behalf of the LHCb Collaboration

QWG 2019 – The 13th International Workshop on Heavy Quarkonium 17 May 2019, Turin, Italy

SPECTROSCOPY AT LHCb

LHCb has largely contributed to populate the zoo of particles. Some of them have a clear "exotic" signature

SPECTROSCOPY AT LHCb

...but many other states have uncertain nature. Goal of the upcoming years is to probe their conventional/exotic nature...and find new candidates of course

LHCb GOING TO UPGRADE

Upgrade I (Approved)

- Main limitation that prevents exploiting higher luminosity with the present detector is the Level-0 (hardware) trigger
 - ✓ Level-0 output rate < 1 MHz (readout rate) requires raising thresholds
- > This is particularly problematic for hadronic final states
- ▶ Running at 2x10³³ cm⁻² s⁻¹ with full software trigger, running at 40 MHz

Upgrade II (Under approval)

To be installed in Long Shutdown 4 of the LHC:

- Subsystems redesigned to operate at a luminosity of 1-2 x 10³⁴ cm⁻² s⁻¹
- > Integrated luminosity of > 300 fb^{-1}
- \blacktriangleright Extension of the experiment's capabilities into selecting $\pi^0,\,\eta$ and low-momentum tracks

QWG 2019

What about Ξ_{bc} ?

 > The B_c meson was discovered almost two decades ago In LHCb, ~5000 B_c →J/ψπ in Run I
 So, why have we not yet seen bcq baryons (Ξ_{bc})? Lower production rates, guess σ(X_{bc}) ~ (0.1 -0.5) × σ(B_c⁺) In J/ψ modes, (usually) get a charm baryon: yield reduced by BF(X_c) × ε_{sel}(X_c) Shorter lifetime (~0.15 – 0.4 ps range, compared to ~0.5 ps for B_c)

 $(e.g.) N(\Xi_{bc}^{0} \to J/\psi\Lambda_{c}^{+}K^{-}; \operatorname{Run1}) = N(B_{c}^{+} \to J/\psi D_{s}^{(*)+}; \operatorname{Run1}) \\ \times \frac{\sigma(pp \to \Xi_{bc}X)}{\sigma(pp \to B_{c}^{+}X)} \times f_{\Xi_{bc} \to \Xi_{bc}^{0}} \\ \times \frac{Br(\Xi_{bc}^{0} \to J/\psi\Lambda_{c}^{+}K^{-})}{Br(B_{c}^{+} \to J/\psi D_{s}^{(*)+})} \\ \times \epsilon_{K^{-}} \\ \simeq 3 \text{ candidates} \\ [arXiv:1808.08865] \\ N(\Xi_{bc}^{0} \to J/\psi\Lambda_{c}^{+}K^{-}; \operatorname{Run}5) \simeq 6 \times 10^{2}$

Exclusive Ξ_{bb} are even more unlikely but see later for an alternative approach QWG 2019 M. Pappagallo 6

PROBING THE NATURE OF THE EXOTIC HADRONS

- Observation of several hadronic resonances with hidden charm or beauty (so called X, Y, Z states) in the last decade at LHC and B-factories
- They barely fit to standard quarkonium scenarios and "exotic" interpretations proposed: compact tetraquarks, molecules, cusps, …
- ➢ Most of them are quite broad and observed in 3-body decays of b-hadrons (e.g. B⁰ → Z(4430)⁻ (→ ψ(2S) π⁻) K⁺)

- Searching for isospin partners
- Measurements of quantum numbers J^P

Such goal relies on amplitude analysis techniques. Refinement of theoretical parametrization of hadronic amplitudes and advanced understanding of the light spectroscopy are required in the meantime

QWG 2019

PROBING THE NATURE OF THE EXOTIC HADRONS arXiv:1904.03947

What about the narrow pentaguarks P_c^+ recently observed? (See Lucio's talk for more details) https://agenda.infn.it/event/15632/contributions/89325/ \blacktriangleright Determination of quantum numbers is very

likely but observation of isospin partners is disfavored ($P_c^0 \rightarrow J/\psi$ n)

However new insights might come by: > Studying P_c^+ in different system (e.g. $B^0 \rightarrow J/\psi p \overline{p}$) or decay modes (e.g. $\Lambda_{\rm b} \rightarrow \chi_{\rm c1} \rm pK$)

Measurements of production in prompt and from b-hadron decays

QWG 2019

DOUBLY CHARMED TETRAQUARK: $cc\overline{q}\overline{q}$

[A. Esposito et al.: PRD 88 (2013) 054029]

- Doubly charmed particles are a straightforward consequence of the hidden charmed exotic hadrons
- ➤ If discovered, they would be almost full-proof states made of 4 quarks

Between them, the doubly charged states play an important role into understanding their nature: indeed in a loosely bound molecule, Coulomb repulsion would induce a fall-apart decay on very short time scales

Tetraquark

Loosely bound molecules

QWG 2019

 $M(\mathcal{T}_{s}^{++})$ [MeV]

M. Pappagallo

 $M(\mathcal{T}_{s}^{++})$ [MeV]

DOUBLY CHARMED TETRAQUARK IN LH **PROMPT PRODUCTION**

Narrow states could be easily spotted in the prompt production

Associated production of D^+D^+ and $D^+D_s^+$ (0.3 fb⁻¹) [JHEP 06 (2012) 141]

arXiv:1808.08865 $N(D^+D^+; \text{Run5}) \simeq 750 \text{k candidates}$ $N(D^+D_s^+; \text{Run5}) \simeq 150 \text{k candidates}$

QWG 2019

DOUBLY CHARMED TETRAQUARK IN B_c DECAYS

- ➢ If the states are broad-ish → Search for them in B_c decays where the quantum numbers can be also measured
- ➤ The B_c meson is the lightest state in the standard model that can decay to two same-flavour charmed hadrons: $\mathcal{T}_s^+(cc\bar{u}\bar{s}) \to D^0 D_s^+$

MULTIPLETS OF PENTAQUARKS

As for other hadrons, multiplets of pentaquarks should exist. The observed P_c^+ should be states with quark content *uudcc*. We could look for strange pentaquark $P_{cs}{}^0 \rightarrow J/\psi \Lambda$ in Ξ_b decays.

QWG 2019

INCLUSIVE SEARCH FOR DOUBLY BEAUTY HADRONS $(\Xi_{bb}, \Omega_{bb}, X_{bb\overline{q}\overline{q}}, etc...)$

QWG 2019

BELLE II AND LHCb AT WORK

Complementarity of the two experiments essential in exploring spectroscopy
 ➤ LHCb: larger production cross-sections, more performant for decay mode involving charged particles (e.g. X(3872)→J/ψππ, ...), unique in many sectors: B_s^(**), B_c^(**), Ξ_{bc}^(**)

➢ Belle II: smaller background, more suitable for decay modes with neutrals in the final state (e.g. X(3872)→J/ψ γ and its isospin/C-odd partners, ...)

		LHCb		Belle II
Decay mode	$23\mathrm{fb}^{-1}$	$50{\rm fb}^{-1}$	$300\mathrm{fb}^{-1}$	$50\mathrm{ab}^{-1}$
$B^+ \to X(3872) (\to J/\psi \pi^+ \pi^-) K^+$	14k	30k	180k	11k
$B^+ \rightarrow X(3872) (\rightarrow \psi(2S)\gamma) K^+$	500	$1\mathrm{k}$	$7\mathrm{k}$	4k
$B^0 \rightarrow \psi(2S) K^- \pi^+$	340k	700k	4M	140k
$B_c^+ \rightarrow D_s^+ D^0 \overline{D}{}^0$	10	20	100	
$\Lambda_b^0 \to J/\psi p K^-$	340k	700k	$4\mathrm{M}$	
$\Xi_{b}^{-} \rightarrow J/\psi \Lambda K^{-}$	4k	10k	55k	
$\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$	7k	15k	90k	< 6 k
$\Xi_{bc}^+ \to J/\psi \Xi_c^+$	50	100	600	

QWG 2019

QWG 2019

BACK UP

SEARCH FOR A STABLE 1⁺⁺ bbud Tetraquark

- It would have observable lifetime, this combinatorial background would be under control
- Unfortunately *bbq* baryons have not been observed yet, reflecting low prompt production rates expected for both *b* quarks to end up in the same hadron, and difficulty in reconstruction of two subsequent weak decays of *b* quark

Inclusive reconstructive efficiencies for B mesons are low at LHCb due to low branching fractions into low multiplicity final states

Not promising even for Upgrade II!

QWG 2019

IMPACT OF CALORIMETER UPGRADE

- Increased calorimeter resolution
- Reduction in background by a fast timing calorimeter information
- > Increased sensitivity to low p_T photon and π^0

► Measurement of $B(X(3872) \rightarrow \psi(2S) \gamma)/B(X(3872) \rightarrow J/\psi \gamma)$ [Nucl.Phys.B886 (2014) 665]

 $\frac{BR(X(3872) \to \psi(2S)\gamma)}{BR(X(3872) \to J/\psi\gamma)} = 2.46 \pm 0.64 \pm 0.29$

Pure molecule scenario disfavored

 Search for pentaquarks decaying to χ_{c1}p where χ_{c1}→J/ψ γ [LHCb: PRL 119 (2017) 062001]

IMPACT OF CALORIMETER UPGRADE Neutrals will be crucial into probing further the X(3872) meson C-odd partner X(3872) (J^{PC} = 1⁺⁻) X(3872) (J^{PC} = 1⁺⁺) (tetraquark/molecule) J/ψ n Isospin partner (tetraquark/molecule) $X(3872)^{\pm}$ X_b $\Upsilon(1S)\omega$ J/ψ π±**π**⁰

QWG 2019

IMPACT OF VELO UPGRADE

Removal of RF foil
➢ Improved vertex resolution
➢ Higher signal efficiency with large

- Bigher signal efficiency with large background rejection
- Increased track efficiency
- Reduction in ghost rates

- ➢ Better performance into detecting low momentum tracks will contribute into studying/observing excited states decaying through dipion transitions (e.g. B_c* → B_c п п)
- ➢ Better reconstruction efficiency for multibody B decays, such as B→DDK aiming to the search for charmonium-like states
- → Improved vertex resolution → Higher efficiency into selecting short-lived particles: B_c , Ξ_{cc} , Ω_{cc} , Ξ_{bc} , Ω_{ccc}

LIGHT BARYON SPECTROSCOPY

- ➤ The poor knowledge of the light sector (A*, N*, etc...) has had a large impact on the amplitude analyses aiming to the search for the pentaquarks
- \succ LHCb can contribute to study the spectroscopy of the light sector as well

