BESIII Future Plans

Wolfgang Gradl for the BESIII collaboration

17th May 2019 13th international workshop on heavy quarkonium

I SFB

JGU SUTENBERG

Physics in the τ -charm region in China

Long and successful history:

- 1981 T. D. Lee and W. Panofsky suggest e^+e^- collider in China
- 1982 e^+e^- collider endorsed by Deng Xiaoping
- 1984 Approval and ground breaking with Deng Xiaoping wielding shovel
- 1988 First collisions in BEPC
- 1991 US scientists join BES (\approx 145 authors)
- 2003 Approval of major upgrade: BEPCII and BESIII
- 2008 First hadron events recorded in BESIII
- 2019 BESIII: international collaboration with 500 members

IHEP

IHEP

BEPCII storage rings: a τ -charm factory

Upgrade of BEPC (started 2004, first collisions July 2008) Beam energy 1 GeV to 2.3 GeV Optimum energy 1.89 GeV Single beam current 0.91 A Crossing angle ±11 mrad

BESIII detector

Completely new detector in 2008

The BESIII Collaboration 2019

Unique data sets for open charm:

\sqrt{s} / GeV	\mathcal{L} / fb $^{-1}$	
3.77	2.93	DD
4.008	0.48	$DD^*, \psi(4040), D_S^+ D_S^-$
4.18	3.2	$D_{s}D_{s}^{*}$
4.6	0.59	$\Lambda_{\scriptscriptstyle C}^+ ar{\Lambda}_{\scriptscriptstyle C}^-$

10 years data taking at BESIII

More than 250 papers published or submitted so far several new results shown at this workshop

Highlights include:

- Precision measurement of τ mass (expect improved measurement soon!)
- Form factors of charmed hadrons, $|V_{cs}|$, $|V_{cd}|$
- Λ_c^+ production at threshold, Λ_c^+ decays
- G_E , G_M of proton
- Polarisation of Λ from J/ψ decays
- Charmonium and XYZ spectroscopy *Z_c*(3900), *Z_c*(4020), *Y*(4260), *X*(3872) ...

Near future: Upgrades to accelerator

Planned and funded upgrades of BEPCII:

■ Top-up injection: level off instantaneous luminosity

gain $\approx 30\%$ in \mathcal{L}_{int}

Upgrades to feedback systems, accelerator steering, BESIII trigger

(inhibit L1 trigger around injection) ...all done!

Test runs taken a few days ago look promising

Near future: Upgrades to accelerator (II)

Energy upgrade

- currently, $E_b^{\text{max}} = 2.3 \,\text{GeV}$ due to power supplies, cooling of magnets
- upgrade I: $\tilde{E}_{b}^{\text{max}} = 2.35 \text{ GeV}$: done in summer shutdown 2018
- upgrade II: E_b^{max} = 2.45 GeV: requires rebuilt septum magnets (in progress)

will give access to resonance around 4.66 GeV seen by Belle in $\Lambda_c^+ \overline{\Lambda}_c^$ and much larger Λ_c^+ sample (and via $\Sigma_c^+ \overline{\Lambda}_c^-$, absolute BF of Σ_c^+)

More extensive luminosity upgrade under study

Magnet power supply room during 4.6 GeV running in winter 2013/14

Near past and future: upgrades to detector

Detector has been running very smoothly, performance generally excellent.

■ Endcap TOF: upgrade finished 2015 replace single-layer plastic scintillator with multigap RPC TOF resolution: 110 ps → 60 ps 95% π/K separation up to 1.4 GeV

Near past and future: upgrades to detector (II)

Innermost part of drift chamber shows signs of ageing halted by changing gas mixture, slightly lower HV

- ➡ efficiency deteriorating
- New inner MDC built and available
- CGEM: upgrade in progress (installation 2020) three layers of cylindrical GEM detectors.

Radiation hard, efficient, fast, better hit resolution along beam direction. Improvements w.r.t. KLOE CGEM detector:

- Improved anode design
- Analogue readout (new ASIC, designed in Torino)
- Micro-TPC reconstruction: get coordinates and direction

Physics programme for future data taking

Unordered list of data sets to be collected:

- 10 fb⁻¹ on ψ (3770) (better yet, 20 fb⁻¹)
- 6 fb⁻¹ at 4.18 GeV
- 5 fb⁻¹ at 4.64 GeV
- scan at highest energies
- continue XYZ scan (500 fb⁻¹ per point between 4.0 and 4.6 GeV)
- Large Z_c samples: 5 fb⁻¹ each at 4.23, 4.42 GeV
- High-statistics data samples around 2.2, 2.4 GeV
- **3** × 10⁹ ψ (3686)

...

...wishlist comprises about 40 fb⁻¹

Competition from Belle II?

Typical mass resolution for charged states in ISR physics: $\lesssim 5\,{\rm MeV}/c^2$

Spacing of BESIII R-scan points: 5 MeV (beam-energy spread ~ 1.3 MeV), BEMS available!

Direct scan

- (very) high luminosity at a few selected \sqrt{s}
- better resolution in √s relevant for direct production of 1⁻⁻ states

ISR

- ISR: many \sqrt{s} simultaneously
- reduced point-to-point systematics
- mass resolution limited by detector res.
- boost of hadronic system vs.
 γ_{ISR} may actually help efficiency

BESIII still competitive, even against full Belle II dataset

Direct scan

- (very) high luminosity at a few selected \sqrt{s}
- better resolution in √s relevant for direct production of 1⁻⁻ states

ISR

- ISR: many \sqrt{s} simultaneously
- reduced point-to-point systematics
- mass resolution limited by detector res.
- boost of hadronic system vs.
 γ_{ISR} may actually help efficiency

Far future: HIEPA — Super-tau-charm factory in China

- Peak luminosity $1 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ at $\sqrt{\text{s}} = 4 \text{ GeV}$
- Energy range $E_{\rm cm} = 2 \cdots 7 \, {\rm GeV}$
- Could come online 2030, after the end of BESIII operation
- Appears favourably in reports to Ministry of Science and Technology, Chinese National Science Foundation, and Chinese Academy of Science
- R&D funds allocated
- Site: under discussion (Hefei?) synergy with other accelerator-based facilities
- Interplay with STCF in Novosibirsk?

Outlook

- BESIII collaboration has the strong support of IHEP lab management.
- Operation time and budget have to be requested periodically. Chinese funding agencies very supportive.
- Whitepaper with outline of physics programme for the next 5 ~ 10 years in preparation.

International review will start now, expect finished product by end of this year.

 Symposium to celebrate 30 years of *τ*-charm physics in Beijing: IHEP, 5 – 6 September 2019

You are cordially invited to attend this event

https://indico.ihep.ac.cn/event/9761/

A lot of exciting physics ahead of us with BESIII

