R measurement at KEDR

Andrey Shamov and Korneliy Todyshev for KEDR collaboration

13-17 May 2019

The 13th International Workshop on Jeavy Quarconium

$\stackrel{\scriptstyle{}_{\scriptstyle\triangleleft}}{=} \mathscr{B}(s)$ measurement. Motivation.

In first approximation: $R(s)\simeq 3\sum e_q^2$

R(s) is used to determine:

• $\alpha_s(s)$ • $(g_{\mu} - 2)/2$ • $\alpha(M_Z^2)$ • m_Q

KEPP-4M and KEDR

Kedr is a siberian pine somewhat similar to lebanon cedar

QWG-2019

R measurement at KEDR

Andrey Shamov

$\stackrel{\scriptstyle{\scriptstyle{<}}}{\scriptstyle{\sim}}$ \bigotimes R measurement between J/ψ and $\psi(2S)$

The observed multihadron cross section as a function of the c.m. energy

- The c.m. energy range between 3.076 and 3.72 GeV studied
- An integrated luminosity of 2.7 pb⁻¹ collected at 9 energies 3.077, 3.120,3.223, 3.315, 3.418, 3.500, 3.521, 3.618, 3.719 GeV
- $\bullet~\sim(2-6)\times10^3$ m.h. events per point, $\sim38\times10^3$ in total

🖄 🕅 🖄 🖄

The way that we are measuring R:

$$R = \frac{\sigma_{obs}(s) - \sum \varepsilon_{\psi}^{tail}(s) \sigma_{\psi}^{tail}(s) - \sum \varepsilon_{bg}^{i}(s) \sigma_{bg}^{i}(s)}{\varepsilon(s)(1 + \delta(s))\sigma_{\mu\mu}^{0}}$$

with $\sigma_{obs}(s) = \frac{N_{mh} - N_{res.bg.}}{\int \mathcal{L}dt}$ where N_{mh} represent all events pass hadronic selection criteria, $N_{res.bg.}$ – residual machine background $\sum \varepsilon_{\psi}^{tail}(s)\sigma_{\psi}^{tail}(s)$ is contribution from J/ψ and $\psi(2S)$ resonances $\sum \varepsilon_{bg}^{i}(s)\sigma_{bg}^{i}(s)$ is contribution from physical processes: $e^+e^- \rightarrow l^+l^-$, $\gamma\gamma$ -processes.

 $\varepsilon(s)$ – multihadron efficiency.

$$1+\delta(s) = \int dx \frac{1}{1-x} \frac{\mathcal{F}(s,x)}{\left|1-\tilde{\Pi}(s(1-x))\right|^2} \frac{\tilde{R}(s(1-x))\varepsilon(s(1-x))}{R(s)\varepsilon(s)}$$

 $\mathcal{F}(s, x)$ – radiative correction kernel (E.A.Kuraev, v.S.Fadin sov.J.Nucl.Phys.41(466-472)1995) Here Π and \tilde{R} does not includes J/ψ and $\psi(2S)$ resonances. To determine the contributions of the J/ψ and $\psi(2S)$ without external data, the additional data samples of about 0.4 pb⁻¹(2010-2011) and 0.34 pb⁻¹(2014-2015) were collected in the vicinity of peak regions.

QWG-2019

Simulation: JETSET and LUARLW

Properties of hadronic events produced in the uds continuum at 3.119 GeV (2014-2015). Here N is the number of events, N_{trk}^{IP} is the number of tracks originated from IP, P_t is a transverse momentum of the track, H_2 and H_0 are Fox-Wolfram moments, θ is a polar angle of the track, E_{cal} is energy deposited in the calorimeter, $E_{T_r}^{max}$ is energy of the most energetic photon.

R measurement at KEDR

🖄 🕅 Systematic uncertainties

Source	Syst. uncertainty, %		
	Scan 1 and 2 (2010-2011)	Scan 2014-2015	Correlated
Luminosity	1.1	0.9	0.4
Rad. corr.	$0.4 \div 0.6$	$0.5 \div 0.8$	$0.2 \div 0.4$
uds simulation	$1.3 \div 2.0$	1.1	0.9
Track reconstruction	0.5	0.4	-
$-J/\psi$	$0.1 \div 2.7$	$0.1 \div 1.8$	-
$\psi(2S)$ (at 3.72 GeV)	1.4	1.1	-
I ⁺ I ⁻	$0.1 \div 0.2$	0.3÷0.4	$0.1 \div 0.2$
e ⁺ e ⁻ X	$0.1 \div 0.2$	0.1	0.1
Trigger	0.2	0.2	0.2
Nuclear interaction	0.2	0.2	0.2
Machine background	$0.5 \div 1.1$	0.4 ÷ 0.8	-
Cuts	0.6	0.6	-
Total	$\begin{array}{c} 2.1 \div 3.6 \\ \text{(correlated } 1.8 \div 2.5) \end{array}$	1.9÷2.7	1.1

\leq R for \sqrt{s} = 3.12 – 3.72 GeV

Using J/ψ and $\psi(2S)$ parameters, we obtain $R_{uds}(s) + R_{J/\psi+\psi(2S)} \Longrightarrow R(s)$

Da	ta 2010-2011	Da	ta 2014-2015		Combination
\sqrt{s} , MeV	$R_{uds}(s)$	\sqrt{s} , MeV	$R_{uds}(s)$	\sqrt{s} , MeV	$R_{uds}(s)\{R(s)\}$
-	-	3076.7 ± 0.2	$2.188 \pm 0.056 \pm 0.042$	$\textbf{3076.7} \pm \textbf{0.2}$	2.188 \pm 0.056 \pm 0.042
$\textbf{3119.9} \pm \textbf{0.2}$	$2.215 \pm 0.089 \pm 0.066$	$\textbf{3119.2} \pm \textbf{0.2}$	$2.211 \pm 0.046 \pm 0.060$	$\textbf{3119.6} \pm \textbf{0.4}$	$2.212\{2.235\} \pm 0.042 \pm 0.049$
$\textbf{3223.0} \pm \textbf{0.6}$	$\textbf{2.172} \pm \textbf{0.057} \pm \textbf{0.045}$	$\textbf{3221.8} \pm \textbf{0.2}$	$\textbf{2.214} \pm \textbf{0.055} \pm \textbf{0.042}$	$\textbf{3222.5} \pm \textbf{0.8}$	$2.194\{2.195\}\pm 0.040\pm 0.035$
$\textbf{3314.7} \pm \textbf{0.7}$	$\textbf{2.200} \pm \textbf{0.056} \pm \textbf{0.043}$	$\textbf{3314.7} \pm \textbf{0.4}$	$\bf 2.233 \pm 0.044 \pm 0.042$	$\textbf{3314.7} \pm \textbf{0.6}$	$2.219{2.219} \pm 0.035 \pm 0.035$
$\textbf{3418.2} \pm \textbf{0.2}$	$\textbf{2.168} \pm \textbf{0.050} \pm \textbf{0.042}$	$\textbf{3418.3} \pm \textbf{0.4}$	$2.197 \pm 0.047 \pm 0.040$	$\textbf{3418.3} \pm \textbf{0.3}$	$2.185\{2.185\} \pm 0.032 \pm 0.035$
-	-	3499.6 ± 0.4	$2.224 \pm 0.054 \pm 0.040$	3499.6 ± 0.4	$2.224\{2.224\} \pm 0.054 \pm 0.040$
$\textbf{3520.8} \pm \textbf{0.4}$	$2.200 \pm 0.050 \pm 0.044$	-	-	$\textbf{3520.8} \pm \textbf{0.4}$	$2.200\{2.201\} \pm 0.050 \pm 0.044$
$\textbf{3618.2} \pm \textbf{1.0}$	$\textbf{2.201} \pm \textbf{0.059} \pm \textbf{0.044}$	$\textbf{3618.1} \pm \textbf{0.4}$	$\textbf{2.220} \pm \textbf{0.049} \pm \textbf{0.042}$	$\textbf{3618.2} \pm \textbf{0.7}$	$2.212\{2.218\}\pm 0.038\pm 0.035$
$\textbf{3719.4} \pm \textbf{0.7}$	$2.187 \pm 0.068 \pm 0.060$	$\textbf{3719.6} \pm \textbf{0.2}$	$\textbf{2.213} \pm \textbf{0.047} \pm \textbf{0.049}$	$\textbf{3719.5} \pm \textbf{0.5}$	$2.204{2.228} \pm 0.039 \pm 0.042$

V.V.Anashin et al., Phys.Lett. B 753, 533-541 (2016).[arXiv:1510.02667] V.V.Anashin et al., Phys.Lett. B 788, 42-51 (2019).[arXiv:1805.06235]

\checkmark (A) R for \sqrt{s} = 1.84 – 3.05 GeV

- An integrated luminosity 0.66 pb^{-1} collected at 13 equidistant points with a step \sim 0.1 GeV: 1.841, 1.937 ... 3.048 GeV
- $\bullet~\sim 10^3$ hadronic events per point, 14.8×10^3 events in total
- Simulation of the *uds* continuum based on the LUARLW generator, tuned JETSET alternatively used at 6 points for a cross-check.

Experimental distribution and two variants of MC simulation based on LUARLW and tuned JETSET are plotted ($\sqrt{s} = 1.94$ GeV and $\sqrt{s} = 2.14$ GeV).

R measurement at KEDR

*** (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (C) (C)**

Measured value of
$$R = \frac{\sigma_{obs}(s) - \sum \varepsilon'_{bg}(s)\sigma'_{bg}(s)}{\varepsilon(s)(1+\delta(s))\sigma^0_{\mu\mu}}$$

The main systematic uncertainties in the *R*:

\sqrt{s} , MeV	R(s)	
1841.0	$2.226 \pm 0.139 \pm 0.158$	
1937.0	$2.141 \pm 0.081 \pm 0.073$	-
2037.3	$2.238 \pm 0.068 \pm 0.072$	-
2135.7	$2.275 \pm 0.072 \pm 0.055$	-
2239.2	$2.208 \pm 0.069 \pm 0.053$	-
2339.5	$2.194 \pm 0.064 \pm 0.048$	-
2444.1	$2.175 \pm 0.067 \pm 0.048$	_
2542.6	$2.222 \pm 0.070 \pm 0.047$	_
2644.8	$2.220 \pm 0.069 \pm 0.049$	_
2744.6	$2.269 \pm 0.065 \pm 0.050$	_
2849.7	$2.223 \pm 0.065 \pm 0.047$	_
2948.9	$2.234 \pm 0.064 \pm 0.051$	-
3048.1	$2.278 \pm 0.075 \pm 0.048$	

Source	Error,%
Luminosity	1.2
Rad. corr.	$0.5 \div 2.0$
uds simulation	$1.2 \div 6.6$
1+1-	$0.3 \div 0.6$
e^+e^-X	0.2
Trigger	0.3
Nuclear interaction	0.4
Machine background	$0.4 \div 0.9$
Cuts	0.7
Total	$2.1 \div 7.1$

V.V. Anashin et al., Phys.Lett. B 770C, 174 (2017)

R measurement at KEDR

Somparison with others experiments

The quantity R versus the c.m. energy and the sum of the prediction of perturbative QCD and a contribution of narrow resonances.

In the c.m.energy range 3.08-3.72 GeV the weighted average $\overline{R}_{uds} = 2.204 \pm 0.014 \pm 0.026$ is approximately one sigma higher than that theoretically expected, $R_{uds}^{pQCD} = 2.16 \pm 0.01$ calculated according to the pQCD In the lower c.m.energy range 1.84-3.05 GeV the weighted average is $2.225 \pm 0.020 \pm 0.047$ (the pQCD prediction of 2.18 ± 0.02).

$\stackrel{\scriptstyle{}_{\scriptstyle\triangleleft}}{=}$ M application of the R(s)

Correlated uncertainties of R_{uds} in %				
Source	Uncertainty in %			
	Data	Data		
	2010	2010 / 2011,2014		
Luminosity				
Cross section calc.	0.5	0.4		
Calorimeter	0.7	-		
response				
Calorimeter	0.2	0.2		
alignment				
Rad. correction				
□ approx.	0.3	0.1		
$\delta R_{uds}(s)$	0.2	0.2		
$\delta \epsilon(s)$	0.3	0.2		
Continuum	1.2	0.4 ÷ 0.8		
simulation				
Track reconstr.	0.5	0.4		
e^+e^-X	0.2	0.1		
contribution				
/+/- contribution	0.3	0.2		
Trigger efficiency	0.3	0.2		
Nuclear interaction	0.4	0.2		
Sum in quadrature	1.8	0.8 ÷ 1.1		

$$R_{\rm uds}(s) \simeq 2 \times \left(1 + \frac{\alpha_s}{\pi} + \frac{\alpha_s^2}{\pi^2} \times \left(\frac{365}{24} - 9\zeta_3 - \frac{11}{4}\right)\right)$$

where ζ is the Euler-Riemann zeta function,

$$\begin{split} \alpha_{\mathrm{S}}(\mathrm{s}) &= \frac{\mathbf{1}}{b_{0}t} \left(\mathbf{1} - \frac{b_{1}I}{b_{0}^{2}t} + \frac{b_{1}(I^{2} - I - \mathbf{1}) + b_{0}b_{2}}{b_{0}^{4}t^{2}} \right. \\ &+ \frac{b_{1}^{3}(-2I^{3} + 5I^{2} + 4I - \mathbf{1}) - 6b_{0}b_{2}b_{1}I + b_{0}^{2}b_{0}^{3}}{2b_{0}^{6}t^{3}} \right) \end{split}$$

with $t = \ln \frac{5}{\Lambda^2}$, $l = \ln t$ parametrized in terms of the QCD scale parameter Λ and coefficients b_0 , b_1 , b_3 (can be found in PDG). To determine Λ , we minimise the χ^2 function

$$\chi^{2} = \sum_{i} \sum_{j} \left(R_{uds}^{\text{meas}}(s_{i}) - R_{uds}^{\text{calc}}(s_{i}) \right) C_{ij}^{-1} \left(R_{uds}^{\text{meas}}(s_{j}) - R_{uds}^{\text{calc}}(s_{j}) \right) ,$$

The obtained value of $\Lambda=0.361^{+0.155}_{-0.174}$ GeV corresponds to $\alpha_s(m_\tau)=0.332^{+0.100}_{-0.092}$. If the next order of pQCD is included in the expansion of $R_{\rm uds}$, the fitting results are as follows: $\Lambda=0.437^{+0.210}_{-0.215}$ GeV and $\alpha_s(m_\tau)=0.378^{+0.173}_{-0.120}$.

 $\alpha_s(m_{\tau})$ determined from our R(s) results is consistent with obtained in semileptonic τ decays ($\alpha_s(m_{\tau}) = 0.331 \pm 0.013$)

🖄 🔇 Comparison with exclusive data

A. Keshavarzi, D. Nomura and T. Teubner. The muon g - 2 and $\alpha(M_Z^2)$: a new data-based analysis. Phys. Rev. D **97**, 114025 (2018).[arXiv:1802.02995].

R measurement in the energy range 4.56-6.96 GeV.

- First scan finished in 2018. An integrated luminosity \sim 4 pb⁻¹ collected at 8 equidistant points with a step \sim 0.3 GeV from 4.71 to 6.81 GeV
- In April 2019 we have started the second scan (10 equidistant points in the energy range 4.56 ÷ 6.96 GeV)

R measurement at KEDR

🕅 Summary

- KEDR has measured the *R* values at 22 center-of-mass energies between 1.84 and 3.72 GeV.
- In the energy range between 1.84 and 3.05 GeV the achieved accuracy is about or better than 3.9% at most of the energy points with a systematic uncertainty less than 2.4%.
- For the energies above J/ψ resonance the total error is about or better than 2.6% and a systematic uncertainty of about 1.9%.
- \bullet We are taking data in the energy range from 4.56 to 6.96 GeV

Thank you for your time and attention

R measurement at KEDR

Andrey Shamov

BACKUP SLIDES

R contribution in a_{μ} and $\alpha(M_Z^2)$

$$a_\mu^{exp}=(g_\mu-2)/2$$

$$a_{\mu}^{LO\ VP}=rac{lpha^2}{3\pi^2}\int_{m_{\pi}^2}^{\infty}rac{K(s)R(s)}{s}ds$$

Low energy contributions dominate

$$\Delta \alpha = \sum_{f} \sum_{\gamma} \sum_{\gamma} \left(\sum_{\sigma \in \mathcal{T}} \Delta \alpha_{\mathsf{lep}}(s) + \Delta \alpha_{\mathsf{had}}(s) \right)$$

$$\Delta \alpha^{(5)}(M_Z^2) = -\frac{\alpha M_Z^2}{3\pi} \operatorname{Re} \int_{m_\pi^2}^{\infty} \frac{R(s)ds}{s(s-M_z^2-i\epsilon)}$$

K.Hagiwara et al. arxiv:1105.3149

QWG-2019

R measurement at KEDR

Andrey Shamov

18/17

$\sigma^{e^+e^-\to {\rm hadrons}}$ and $\sigma^{e^+e^-\to e^+e^-}$ nearby a narrow resonance

In the soft photon approximation analytical expression for the annihilation cross section nearby a narrow resonance.

Ya.I. Azimov et al. JETP Lett. 21 (1975) 172. With up-today modifications one has

$$\sigma^{e^+e^- \to \mathsf{hadr}}(s) = \sigma^{e^+e^- \to \mathsf{hadr}}_{\mathsf{continuum}} + \frac{12\pi}{s} (1 + \delta_{sf}) \left[\frac{\Gamma_{\mathrm{ee}}\tilde{\Gamma}_h}{\Gamma M} \operatorname{Im} f(s) - \frac{2\alpha \sqrt{R}\Gamma_{\mathrm{ee}}\tilde{\Gamma}_h}{3\sqrt{s}} \lambda \operatorname{Re} \frac{f^*(s)}{1 - \mathsf{\Pi}_0} \right]$$

$$\left(\frac{d\sigma}{d\Omega}\right)^{ee \to ee} = \left(\frac{d\sigma}{d\Omega}\right)^{ee \to ee}_{\mathsf{QED}} + \frac{1}{s}\left(1 + \delta_{sf}\right) \left\{\frac{9}{4}\frac{\Gamma_{ee}^2}{\Gamma M}(1 + \cos^2\theta)\operatorname{Im} f - \frac{3\alpha}{2}\frac{\Gamma_{ee}}{M}\left[\left(1 + \cos^2\theta\right)\operatorname{Re}\frac{f^*}{1 - \Pi_0(s)} - \frac{\left(1 + \cos\theta\right)^2}{\left(1 - \cos\theta\right)}\operatorname{Re}\frac{f^*}{1 - \Pi_0(t)}\right]\right\},$$

Recently it was verified in the work X. Y. Zhou, Y. D. Wang and L. G. Xia, Chin. Phys. C 41 (2017) no.8,083001

$$\begin{split} \delta &= \frac{3}{4}\beta + \frac{\alpha}{\pi} \left(\frac{\pi^2}{3} - \frac{1}{2}\right) + \beta^2 \left(\frac{37}{96} - \frac{\pi^2}{12} - \frac{L}{72}\right), \quad L = \ln\left(s/m_e^2\right), \beta &= \frac{2\alpha}{\pi} \left(L - 1\right), \\ f(s) &= \frac{\pi\beta}{\sin\pi\beta} \left(\frac{s}{M^2 - s - iM\Gamma}\right)^{1-\beta} \end{split}$$

 Γ_{ee} , Γ , M – 'dressed' parameters including corrections to the vacuum polarization, $\Gamma_{ee} = \Gamma_{ee}^{(0)}/|1 - \Pi_0|^2$, λ -parameter controls the resonance–continuum interference, $\tilde{\Gamma}_h \neq \Gamma_h$ Numerical convolution with the collision energy distribution is used to fit resonance.

QWG-2019

R measurement at KEDR

Andrey Shamov

Detection efficiency uncertainty in the energy range $\sqrt{s} = 1.84 \div 3.05$ GeV

- Used two essentially different MC generators (LUARLW and tuned JETSET)
- We validated our estimate of the systematic uncertainty related to simulation of the *uds* continuum using an unfolding method (Chinise Physics C Vol. 37, No. 6 (2013) 063001).
- The estimate at the most problematic energy point 1.84 GeV was additionally verified using the exclusive generator MHG2000.

Selection criteria

Selection criteria for hadronic events which were used by AND.

Variable	Allowed range		
	3.12-3.72 GeV	1.84 - 3.05 GeV	
$N_{\rm track}^{\rm IP}$	≥ 1	≥ 1	
E _{obs}	> 1.6 GeV	$> 1.4{ m GeV}(_{>1.3{ m GeV}}$ if E $_{beam}$ $<$ 1.05 GeV)	
$E_{\gamma}^{ m max}/E_{ m beam}$	< 0.8	< 0.8	
$E_{ m obs} - E_{\gamma}^{ m max}$		$> 1.2{ m GeV}(_{>1.1{ m GeV}}$ if E $_{beam}$ $<$ 1.05 GeV)	
E _{cal}	> 0.75 GeV	> 0.55 GeV	
H_2/H_0	< 0.85	< 0.9	
$ P_{\rm z}^{\rm miss}/E_{\rm obs} $	< 0.6	< 0.7	
$E_{\rm LKr}/E_{\rm cal}^{\rm tot}$	> 0.15	> 0.15	
$ Z_{\text{vertex}} $	< 20.0 cm	< 15.0 cm	
	$N_{ ext{particles}} \geq 4 ext{ or } ilde{N}_{ ext{track}}^{ ext{IP}} \geq 2$	$N_{ ext{particles}} \geq 3 ext{ or } ilde{N}_{ ext{track}}^{ ext{IP}} \geq 2$	

Simulation at 1.94 and 2.14 GeV: JETSET and LUARLW

Properties of hadronic events produced in uds continuum at 1.94 GeV (left) and 2.14 GeV (right). Here, *N* is the number of events, H_2 and H_0 are Fox-Wolfram moments, E_{γ}^{\max} is energy of the most energetic photon, N_{trk} is the number of tracks in event.

```
QWG-2019
```

R measurement at KEDR

Andrey Shamov

Properties of hadronic events produced in uds continuum at 1.94 GeV (left) and 2.14 GeV (right). Here, N is the number of events, E_{cal} is energy deposited in the calorimeter, θ is polar angle, N_{trk} is the number of tracks in event. Integrals of all distributions are normalized to unity.

Properties of hadronic events produced in uds continuum at 3.12 GeV. Here N is the number of events, H_2 and H_0 are Fox-Wolfram moments. Integrals of all distributions are normalized to unity.

To obtain the detection efficiency required for calculation of the radiative correction, we performed simulation of the hadronic events using LUARLW and the event generator MHG2000 developed by the CMD-3 collaboration. MGH2000 generates about 30 exclusive channels accounting for the resonance production below 1.9 GeV.

Detection efficiency: JETSET and LUARLW

\sqrt{s} , MeV	ϵ_{LUARLW}	$\epsilon_{\textit{JETSET}}$	$\delta\epsilon/\epsilon$
1841.0	42.2 ± 0.1	45.0 ± 0.1	-6.6 ± 0.3
1937.0	47.2 ± 0.1	46.0 ± 0.1	-2.5 ± 0.3
2037.3	53.4 ± 0.1		
2135.7	52.5 ± 0.1	51.3 ± 0.1	-1.2 ± 0.3
2239.2	57.0 ± 0.1		
2339.5	61.6 ± 0.1		
2444.1	64.3 ± 0.1		
2542.6	66.7 ± 0.1		
2644.8	68.2 ± 0.1	68.0 ± 0.1	-0.2 ± 0.2
2744.6	$\textbf{70.3} \pm \textbf{0.1}$	$\textbf{70.6} \pm \textbf{0.1}$	$+0.4\pm0.2$
2849.7	71.6 ± 0.1		
2948.9	$\textbf{73.0}\pm\textbf{0.1}$		
3048.1	$\textbf{72.4} \pm \textbf{0.1}$	73.2 ± 0.1	$+1.1\pm0.2$

Detection efficiency for the uds continuum in % (statistical errors only).

Detection efficiency: JETSET and LUARLW

\sqrt{s} , MeV	ϵ_{JETSET}	ϵ_{LUARLW}	$\delta\epsilon/\epsilon$	
	Sc	an 1		
3119.9	75.5 ± 0.1	75.0 ± 0.1	-0.7 ± 0.2	
3222.4	76.9 ± 0.1	76.2 ± 0.1	-0.9 ± 0.2	
3315.2	$\textbf{77.0} \pm \textbf{0.1}$	$\textbf{77.0} \pm \textbf{0.1}$	0.0 ± 0.2	
3418.1	78.1 ± 0.1	$\textbf{77.4} \pm \textbf{0.1}$	-0.9 ± 0.2	
3521.0	78.3 ± 0.1	78.2 ± 0.1	-0.1 ± 0.2	
3619.7	$\textbf{79.6} \pm \textbf{0.1}$	78.6 ± 0.1	-1.3 ± 0.2	
3720.4	80.8 ± 0.1	$\textbf{79.2}\pm\textbf{0.1}$	-2.0 ± 0.2	
Scan 2				
3120.1	75.3 ± 0.1	74.9 ± 0.1	-0.5 ± 0.2	
3223.6	75.9 ± 0.1	75.1 ± 0.1	-1.1 ± 0.2	
3313.9	77.5 ± 0.1	$\textbf{77.3} \pm \textbf{0.1}$	-0.3 ± 0.2	
3418.4	78.7 ± 0.1	78.0 ± 0.1	-0.9 ± 0.2	
3520.3	78.8 ± 0.1	78.7 ± 0.1	-0.1 ± 0.2	
3617.6	80.0 ± 0.1	$\textbf{79.0} \pm \textbf{0.1}$	-1.3 ± 0.2	
3718.9	80.9 ± 0.1	$\textbf{79.4} \pm \textbf{0.1}$	-1.9 ± 0.2	

Luminosity determination: 3.12-3.72 GeV

 $e^+e^- \to e^+e^-(\gamma)$ events detected by the LKr calorimeter $41^\circ\!<\!\theta\!<\!159^\circ$ and Csl calorimeter $20^\circ\!<\!\theta\!<\!32^\circ$ and $148^\circ\!<\!\theta\!<\!160^\circ$

Systematic uncertainties of the luminosity determination in %.

Source	Uncertainty, %
Calorimeter response	0.7
Calorimeter alignment	0.2
Polar angle resolution	0.2
Cross section calculation	0.5
Background	0.1
MC statistics	0.1
Variation of cuts	0.6
Sum in quadrature	1.1

Differences of an integrated luminosities obtained using the LKr and CsI calorimeters in two scans are 0.5 \pm 0.5% and 0.0 \pm 0.5%, respectively.

Correction to residual machine background: 3.12-3.72 GeV

- The contribution of residual machine background was estimated using runs with separated e^+ and e^- bunches.
- The residual background was evaluated and subtracted using the number of events which passed selection criteria in the background runs in the assumption that the background rate is proportional to the beam current and the measured vacuum pressure.
- As alternative we assumed that background rate is proportional to the current only. The difference between the numbers of background events obtained with the two assumption was considered as the uncertainty estimate for given energy point.

The residual machine background in % of observed cross section

Point	Scan 1	Scan 2
1	$1.3\pm0.2\pm0.4$	$1.3\pm0.2\pm0.4$
2	$2.4\pm0.4\pm0.5$	$2.7\pm0.4\pm0.5$
3	$2.7\pm0.5\pm0.4$	$3.0\pm0.5\pm0.4$
4	$2.9\pm0.5\pm0.4$	$3.6\pm0.6\pm0.4$
5	$3.1\pm0.6\pm0.5$	$3.3\pm0.5\pm0.5$
6	$2.7\pm0.5\pm0.4$	$3.7\pm0.6\pm0.4$
7	$2.1\pm0.4\pm0.2$	$2.2\pm0.3\pm0.2$

Unfolding method

- An efficiency matrix ε_{ij} describes the efficiency of an event generated with *j* charged tracks to be reconstructed with *i* charged tracks.
- The distribution of the number of observed charged track events in data, N_i^{obs} , is known. The true multiplicity distribution in data can be estimated from the observed multiplicity distribution in data and the efficiency matrix by minimizing the χ^2 .

$$\chi^2 = \sum_{i=1}^{i=8} \frac{N_i^{obs} - \sum_{i=1}^{i=8} \epsilon_{ij} \times N_j}{N_i^{obs}}$$

where the N_j (j = 0, 2, 4, 6, 8) describe the true multiplicity distribution in data and are taken as floating parameters in the fit.

• The total «true» number of events in data can be obtained by summing all fitted N_j.

٠

$\Pi(s)$ calculation

 $e^+e^- \to e^+e^-(\gamma)$ events detected by the LKr calorimeter $41^\circ\!<\!\theta\!<\!159^\circ$ and Csl calorimeter $20^\circ\!<\!\theta\!<\!32^\circ$ and $148^\circ\!<\!\theta\!<\!160^\circ$

Systematic uncertainties of the luminosity determination in %.

Source	Uncertainty, %
Calorimeter response	0.7
Calorimeter alignment	0.2
Polar angle resolution	0.2
Cross section calculation	0.5
Background	0.1
MC statistics	0.1
Variation of cuts	0.6
Sum in quadrature	1.1

Differences of an integrated luminosities obtained using the LKr and CsI calorimeters in two scans are 0.5 \pm 0.5% and 0.0 \pm 0.5%, respectively.

Radiation correction calculation in the energy range 1.84 – 3.05 GeV

Detection efficiency vs variable × at 1.84 and 2.14 GeV.

$$\mathbf{1}+\delta(s) = \int \frac{dx}{\mathbf{1}-x} \frac{\mathcal{F}(s,x)}{|\mathbf{1}-\Pi((\mathbf{1}-x)s)|^2} \frac{R((\mathbf{1}-x)s)\varepsilon((\mathbf{1}-x)s)}{R(s)\varepsilon(s)}$$

$$R(s) = -rac{3}{lpha}\,{
m Im}\,{\Pi_{
m hadr}}(s)$$

Vacuum polarization according to CMD-2 data compilation: Eur. Phys. J. C66 (2010) 585

Radiative correction factor $1 + \delta$

\sqrt{s} , MeV	$1 + \delta$	\sqrt{s} , MeV	$1+\delta$
1841.0	1.0423 ± 0.0208	2542.6	1.0739 ± 0.0054
1937.0	1.0429 ± 0.0156	2644.8	1.0796 ± 0.0054
2037.3	1.0515 ± 0.0126	2744.6	1.0809 ± 0.0054
2135.7	1.0634 ± 0.0106	2849.7	1.0823 ± 0.0054
2239.2	1.0645 ± 0.0096	2948.9	1.0774 ± 0.0054
2339.5	1.0664 ± 0.0075	3048.1	1.0584 ± 0.0053
2444.1	1.0684 ± 0.0064		

QWG-2019

R measurement at KEDR

Andrey Shamov

Radiation correction calculation in the energy range 3.12 – 3.72 GeV

$$\mathbf{1}+\delta(s) = \int \frac{dx}{\mathbf{1}-x} \frac{\mathcal{F}(s,x)}{|\mathbf{1}-\tilde{\Pi}((\mathbf{1}-x)s)|^2} \frac{\tilde{R}((\mathbf{1}-x)s)\varepsilon((\mathbf{1}-x)s)}{R(s)\varepsilon(s)}$$

$$R(s) = -rac{3}{lpha}\,{
m Im}\,{\Pi_{{
m hadr}}}(s)$$

Vacuum polarization according to CMD-2 data compilation: Eur. Phys. J. C66 (2010) 585

Detection efficiency vs variable x (scan 1, $\sqrt{s} = 3.52$ GeV).

\sqrt{s} , MeV	Scan 1	Scan 2	Uncertainty,%			Total	
	$1 + \delta$		$\Pi(s)$	δR	$\delta \varepsilon$	$\delta_{calc.}$	
3119.9	1.0941 ± 0.0066	1.1074 ± 0.0066	0.3	0.5	0.2	0.2	0.6
3223.0	1.0949 ± 0.0055	1.1049 ± 0.0055	0.1	0.4	0.2	0.2	0.5
3314.7	1.0959 ± 0.0055	1.1100 ± 0.0056	0.1	0.4	0.2	0.2	0.5
3418.2	1.0982 ± 0.0044	1.1094 ± 0.0044	0.1	0.3	0.2	0.2	0.4
3520.8	1.1032 ± 0.0044	1.1102 ± 0.0044	0.1	0.3	0.2	0.2	0.4
3618.2	1.1021 ± 0.0044	1.1098 ± 0.0044	0.1	0.3	0.2	0.2	0.4
3719.4	1.1049 ± 0.0055	1.1067 ± 0.0055	0.4	0.3	0.2	0.2	0.5

List of systematic uncertainties in the energy range 1.84-3.05 GeV

	1841.0	1937.0	2037.3	2135.7	2239.2	2339.5	2444.1
Luminosity	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Radiative correction	2.0	1.5	1.2	1.0	0.9	0.7	0.6
Continuum simulation	6.6	2.5	2.5	1.2	1.2	1.2	1.2
Track reconstruction	0.5	0.5	0.5	0.5	0.5	0.5	0.5
I ⁺ I ⁻ contribution	0.6	0.5	0.4	0.4	0.4	0.4	0.3
e ⁺ e ⁻ X contribution	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Trigger efficiency	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Nuclear interaction	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Neutral events	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Cuts variation	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Machine background	0.6	0.5	0.4	0.7	0.8	0.6	0.8
Energy determination	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Sum in guadratura	71	3.4	3.2	24	24	22	22
Sum in quadrature			3.2				
Sum in quadrature	2542.6	2644.8	2744.6	2849.7	2948.9	3048.1	
Luminosity	2542.6 1.2	2644.8 1.2	2744.6 1.2	2849.7 1.2	2948.9 1.2	3048.1 1.2	
Luminosity Radiative correction	2542.6 1.2 0.5	2644.8 1.2 0.5	2744.6 1.2 0.5	2849.7 1.2 0.5	2948.9 1.2 0.5	3048.1 1.2 0.5	
Luminosity Radiative correction Continuum simulation	2542.6 1.2 0.5 1.2	2644.8 1.2 0.5 1.2	2744.6 1.2 0.5 1.2	2849.7 1.2 0.5 1.2	2948.9 1.2 0.5 1.2	3048.1 1.2 0.5 1.2	
Luminosity Radiative correction Continuum simulation Track reconstruction	2542.6 1.2 0.5 1.2 0.5	2644.8 1.2 0.5 1.2 0.5	2744.6 1.2 0.5 1.2 0.5	2849.7 1.2 0.5 1.2 0.5	2948.9 1.2 0.5 1.2 0.5	3048.1 1.2 0.5 1.2 0.5	
Luminosity Radiative correction Continuum simulation Track reconstruction I ⁺ I ⁻ contribution	2542.6 1.2 0.5 1.2 0.5 0.5 0.4	2644.8 1.2 0.5 1.2 0.5 0.4	2744.6 1.2 0.5 1.2 0.5 0.5 0.4	2849.7 1.2 0.5 1.2 0.5 0.5 0.4	2948.9 1.2 0.5 1.2 0.5 0.5 0.4	3048.1 1.2 0.5 1.2 0.5 0.5 0.4	
Luminosity Radiative correction Continuum simulation Track reconstruction l^+l^- contribution e^+e^-X contribution	2542.6 1.2 0.5 1.2 0.5 0.5 0.4 0.2	2644.8 1.2 0.5 1.2 0.5 0.4 0.2	2744.6 1.2 0.5 1.2 0.5 0.4 0.2	2849.7 1.2 0.5 1.2 0.5 0.5 0.4 0.2	2948.9 1.2 0.5 1.2 0.5 0.4 0.2	3048.1 1.2 0.5 1.2 0.5 0.5 0.4 0.2	
Juminosity Radiative correction Continuum simulation Track reconstruction l^+l^- contribution e^+e^-X contribution Trigger efficiency	2542.6 1.2 0.5 1.2 0.5 0.4 0.2 0.3	2644.8 1.2 0.5 1.2 0.5 0.4 0.2 0.3	2744.6 1.2 0.5 1.2 0.5 0.4 0.2 0.3	2849.7 1.2 0.5 1.2 0.5 0.4 0.2 0.3	2948.9 1.2 0.5 1.2 0.5 0.4 0.2 0.3	3048.1 1.2 0.5 1.2 0.5 0.4 0.2 0.3	
Sum in quadrature Luminosity Radiative correction Continuum simulation Track reconstruction l^+l^- contribution e^+e^-X contribution Trigger efficiency Nuclear interaction	2542.6 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4	2644.8 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4	2744.6 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4	2849.7 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4	2948.9 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4	3048.1 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4	
Sum in quadrature Luminosity Radiative correction Continuum simulation Track reconstruction l^+l^- contribution $e^+e^- X$ contribution Trigger efficiency Nuclear interaction Neutral events	2542.6 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2	2644.8 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2	2744.6 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2	2849.7 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2	2948.9 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2	3048.1 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2	
Sum in quadratic Luminosity Radiative correction Continuum simulation Track reconstruction l^+l^- contribution e^+e^-X contribution Trigger efficiency Nuclear interaction Neutral events Cuts variation	2542.6 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7	2644.8 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7	2744.6 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.7	2849.7 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7	2948.9 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7	3048.1 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	2542.6 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7 0.4	2644.8 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7 0.6	2744.6 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7 0.8	2849.7 1.2 0.5 1.2 0.4 0.2 0.3 0.4 0.2 0.7 0.4	2948.9 1.2 0.5 1.2 0.4 0.2 0.3 0.4 0.2 0.7 0.9	3048.1 1.2 0.5 1.2 0.4 0.2 0.3 0.4 0.2 0.7 0.5	
Sum in quantume Luminosity Radiative correction Continuum simulation Track reconstruction l^+l^- contribution $e^+e^- \chi$ contribution Trigger efficiency Nuclear interaction Neutral events Cuts variation Machine background Energy determination	2542.6 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7 0.4 0.1	2644.8 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7 0.6 0.1	2744.6 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7 0.8 0.1	2849.7 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7 0.4 0.1	2948.9 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7 0.9 0.1	3048.1 1.2 0.5 1.2 0.5 0.4 0.2 0.3 0.4 0.2 0.7 0.5 0.1	

R systematic uncertainties (in %) assigned to each energy point.

QWG-2019

List of systematic uncertainties in the energy range 3.12-3.72 GeV

	3119.9	3223.0	3314.7	3418.2	3520.8	3618.2	3719.4
			Scan 1				
Luminosity	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Radiative correction	0.6	0.5	0.5	0.4	0.4	0.4	0.5
Continuum simulation	1.4	1.4	1.4	1.4	1.4	1.4	2.1
J/ψ contribution	2.7	0.5	0.3	0.2	0.2	0.1	0.1
$\psi(2S)$ contribution							1.4
e ⁺ e ⁻ X contribution	0.1	0.1	0.1	0.2	0.2	0.2	0.2
/ ⁺ / ⁻ contribution	0.1	0.1	0.1	0.1	0.1	0.2	0.2
Trigger efficiency	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Nuclear interaction	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Cuts variation	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Machine background	1.1	0.8	0.7	0.7	0.9	0.7	0.7
Sum in quadrature	3.5	2.2	2.1	2.1	2.2	2.1	3.0
			Scan 2				
Luminosity	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Radiative correction	0.6	0.5	0.5	0.4	0.4	0.4	0.5
Continuum simulation	1.4	1.4	1.4	1.4	1.4	1.4	2.1
J/ψ contribution	2.8	0.6	0.3	0.2	0.2	0.1	0.1
$\psi(2S)$ contribution							1.3
e ⁺ e ⁻ X contribution	0.1	0.1	0.1	0.2	0.2	0.2	0.2
I ⁺ I ⁻ contribution	0.1	0.1	0.1	0.1	0.1	0.2	0.2
Trigger efficiency	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Nuclear interaction	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Cuts variation	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Machine background	1.1	0.8	0.7	0.8	0.8	0.7	0.5
Sum in quadrature	3.6	2.2	2.1	2.1	2.1	2.1	2.9

 R_{uds} systematic uncertainties (in %) assigned to each energy point.

QWG-2019

Andrey Shamov

pQCD calculation

R(*s*), obtained in: P.A.Baikov *et al.* Nucl. and Part. Phys. Proceed. 261-262(2015):

$$R^{n_{\rm f}=3}(s) = 2\left[1 + \frac{\alpha_s}{\pi} + 1.6398 \left(\frac{\alpha_s}{\pi}\right)^2 - 10.2839 \left(\frac{\alpha_s}{\pi}\right)^3 - 106.8798 \left(\frac{\alpha_s}{\pi}\right)^4\right].$$

 α_s obtained in K.G.Chetyrkin, B.A.Kniehl, M.Steinhauser PRL 79 (1997)

$$\alpha_{s} = \frac{1}{\beta_{0}L} - \frac{1}{(\beta_{0}L)^{2}} \frac{\beta_{1}}{\beta_{0}} \ln L + \frac{1}{(\beta_{0}L)^{3}} \left[\left(\frac{\beta_{1}}{\beta_{0}} \right)^{2} (\ln^{2}L - \ln L - 1) + \frac{\beta_{2}}{\beta_{0}} \right] \\ + \frac{1}{(\beta_{0}L)^{4}} \left[\left(\frac{\beta_{1}}{\beta_{0}} \right)^{3} \left(-\ln^{3}L + \frac{5}{2}\ln^{2}L + 2\ln L - \frac{1}{2} \right) - 3\frac{\beta_{1}\beta_{2}}{\beta_{0}^{2}} \ln L + \frac{\beta_{3}}{2\beta_{0}} \right]$$

For $n_{f} = 3 \ \beta_{0} = \frac{9}{4}, \beta_{1} = 4, \beta_{2} = \frac{3863}{384}, \beta_{3} = \frac{445}{32}\zeta(3) + \frac{140599}{4608}, L = \ln^{2}\frac{Q^{2}}{\lambda_{MS}^{2}}$

 $\alpha_s(m_{\tau}^2) = 0.331 \pm 0.013$ (A.Pich Nucl. and Part. Phys. Proceed. 260 (2015) 61-69) allow to get $R_{uds}^{pQCD} = 2.16 \pm 0.01$ in energy range $3.1 \div 3.7$ GeV.

f

$\leq \emptyset R(s)$ measurement. Motivation.

"The ratio R as of July 1974" Presented by Richter at the London Conference in July 1974.