Two (plus one) α_s determinations from lattice QCD

J. H. Weber¹ and A. Bazavov¹, N. Brambilla³, X. Garcia y Tormo⁴, P. Petreczky², J. Soto⁴, A. Vairo³ (**TUMQCD collaboration**)

¹Michigan State University
 ²Brookhaven National Lab
 ³Technische Universität München
 ⁴Universitat de Barcelona

13th Quarkonium Working Group, Torino, 05/17/2019 YM, PP: PR D94 (2016) ⇒ PP, JHW: arXiv:1901.06424 TUMQCD: PR D90 (2014) ⇒ in preparation

Outline	Introduction	Quarkonium moments	Static energy	Singlet free energy	Summary
•					
Outline					

2 Quarkonium moments

Outline	Introduction	Quarkonium moments	Static energy	Singlet free energy	Summary
	00000	0000000	000000000	000	00

Lattice determinations of α_s in context

- \bullet PDG has increased the global error of α_s since 2014
- Lattice QCD (HPQCD) dominates the global average and error
- Spread hints at underestimated systematic uncertainties?

- We compute hadronic observables on the lattice at sufficiently high scales for the weak-coupling approach to be applicable
- We compare continuum extrapolated lattice results to perturbative results in $\overline{\mathsf{MS}}$ scheme to determine parameters

The time moments of (pseudoscalar) quarkonium correlators (2008-2019)

- The scale is set by the quark mass, $\nu = m_h$ where $m_h \gtrsim m_c$
- Conceptually similar to non-lattice methods
- Large quark masses cause large discretization errors ~ (am_h)ⁿ

The QCD static energy of a (static) quark-antiquark pair (2010-2019)

- The scale is set by the (inverse) size of the system, $\nu = 1/r$
- Other scales are involved, i.e. the ultrasoft scale $\mu_{us} = \alpha_s/r$

Bibliogra	phy (I): ⁻	Fime moments o	of quarkonium	correlators	
	00000	0000000	000000000	000	00
Outline	Introduction	Quarkonium moments	Static energy	Singlet free energy	Summary

• HPQCD collaboration ¹ using 3 or 4 sea quark flavors	(2008-2015)
• JLQCD collaboration ² using 3 sea quark flavors	(2016)
• BNL group ³ using 3 sea quark flavors	(2016-now)
• Fermilab group ⁴ using 4 sea quark flavors	(2016-now)

 ¹Allison et al., Phys.Rev. D78 (2008) 054513 McNeile et al., Phys.Rev. D82 (2010) 034512 Chakraborty et al., Phys.Rev. D91 (2015) no.5, 054508
 ²Nakayama et al., PRD 94 (2016) 054507
 ³Maezawa, Petreczky, Phys.Rev. D94 (2016) no.3, 034507 Petreczky, JHW, arXiv:1901.06424
 ⁴Kronfeld et al., *in preparation*

0	00000	0000000	000000000	000	00			
Bibliography (II): QCD static energy of a quark-antiquark pair								

• TUM group ⁵ using 3 sea quark flavors	(2010-now)
$\bullet~{\rm Frankfurt/Jena~group}^6$ using 2 sea quark flavors	(2012-2018)
$\bullet~{\rm Kyushu~group}^7$ using 3 sea quark flavors	(2018)

Extension to 4 sea quark flavors is planned by the TUMQCD collaboration

 ⁵Brambilla et al., Phys. Rev. Lett. 105 (2010) 212001 Bazavov et al., Phys. Rev. D86 (2012) 114031 Bazavov et al., Phys. Rev. D90 (2014) 7, 074038 Bazavov et al. [TUMQCD], *in preparation* ⁶Jansen et al. [ETMC], JHEP 1201, 025 (2012) Karbstein et al., JHEP 1409, 114 (2014) Karbstein et al., JHEP 1409, 114 (2014)
 ⁷Takaura et al., JHEP 1904, 155 (2019) Takaura et al., JHys. Lett. B789, 598-602 (2019)

Outline	Introduction	Quarkonium moments	Static energy	Singlet free energy	Summary
	00000	0000000	000000000	000	00
Gauge	ensembles				

- We use the (rooted) Highly Improved Staggered Quark (HISQ)⁸ action for two degenerate light quarks and a physical strange quark
- We use the tree-level Symanzik-improved gauge action
- \bullet Discretization errors of HISQ action scale as $\alpha_s a^2$ and a^4
- We use high statistics ensembles generated by the HotQCD⁹ collaboration for a study of EoS with a pion mass of $m_{\pi} \approx 160 \text{ MeV}$ and a kaon mass of $m_{K} \approx 504 \text{ MeV}$ in the continuum limit.
- We also use extra ensembles generated for another study of EoS at high T with a pion mass of $m_{\pi} \approx 320 \,\mathrm{MeV}$ in the continuum limit¹⁰

• We use $\left(r^2 \frac{\partial V_S}{\partial r}\right)_{r=r_1} = 1$ to fix the lattice scale, $r_1 = 0.3106(14)(8)(4)$ fm.

$\frac{N_{\sigma}{}^3 \times N_{\tau}}{48^4}$	a^{-1} [GeV] $\lesssim 2.4$	# TU 8-16K	$N_{\sigma}^{3} \times$	N_{τ} a^{-1} [Gev]	# TU
$\begin{array}{c} 48^3 \times 64 \\ 64^4 \end{array}$	$\stackrel{<}{_\sim} 3.2 \ \stackrel{<}{_\sim} 4.9$	8-9K 9K	40 64 ⁴	$\lesssim 7.9$	8K

⁸Follana et al. [HPQCD], Phys.Rev. D75, 054502 (2007)
 ⁹Bazavov et al. [HotQCD], Phys.Rev. D90, 094503 (2014)
 ¹⁰Bazavov et al., Phys.Rev. D97, no. 1, 014510 (2018))

o occoo occoo occo occo occo	Outline		Quarkonium moments	Static energy	Singlet free energy	
		00000	0000000	00000000	000	00

Lattice setup and heavy quark parameters

β	$\frac{m_{\ell}}{m_s}$	$N_{\sigma}^3 \times N_{\tau}$	a^{-1} GeV	L_{σ} fm	am _{c0}	am _{b0}
6.740	0.05	48 ⁴	1.81	5.2	0.5633(10)	
6.880	0.05	48 ⁴	2.07	4.6	0.4800(10)	
7.030	0.05	48 ⁴	2.39	4.0	0.4047(9)	
7.150	0.05	$48^3 \times 64$	2.67	3.5	0.3547(9)	
7.280	0.05	$48^3 \times 64$	3.01	3.1	0.3086(13)	
7.373	0.05	$48^3 \times 64$	3.28	2.9	0.2793(5)	
7.596	0.05	64 ⁴	4.00	3.2	0.2220(2)	1.019(8)
7.825	0.05	64 ⁴	4.89	2.6	0.1775(3)	0.7985(5)
7.030	0.20	48 ⁴	2.39	4.0	0.4047(9)	
7.825	0.20	64 ⁴	4.89	2.6	0.1775(3)	0.7985(5)
8.000	0.20	64 ⁴	5.58	2.3	0.1495(6)	0.6710(6)
8.200	0.20	64 ⁴	6.62	1.9	0.1227(3)	0.5519(6)
8.400	0.20	64 ⁴	7.85	1.6	0.1019(27)	0.4578(6)

- Pseudoscalar meson operator $j_5(x) = \overline{\psi}(x)\gamma_5\psi(x)$
- RGI pseudoscalar meson correlator

$$G(\tau) = a^8 m_{h_0}^2 \sum_{\boldsymbol{x}} \langle j_5(\boldsymbol{x},\tau) j_5(\boldsymbol{0},\boldsymbol{0}) \rangle_U \quad \lim_{\tau \to 0} \quad \left(\frac{a}{\tau}\right)^4$$

 \bullet HISQ valence quarks, m_c and m_b tuned using η_c and η_b masses

• Meson correlators with $am_{h0} = 1, 1.5, 2, 3, 4 am_{c0}$, and am_{b0}

Quarko	Quarkonium moments with HISQ action								
	00000	0000000	000000000	000	00				
Outline	Introduction	Quarkonium moments	Static energy	Singlet free energy	Summary				

 $\bullet\,$ Time moments are finite for $n\geq 4$ defined on the lattice as

$$G_n = \sum_{\tau/a=1}^{N_{\tau}/2} \left(\frac{\tau}{a}\right)^n [G(\tau) + G(aN_{\tau} - \tau)]$$

- Use random color wall sources statistical errors become irrelevant
- \bullet Fluctuations and mass dependence reduced in ratios $G_n^{\frac{1}{n-4}}/G_{n+2}^{\frac{1}{n-2}}$
- Artifacts $\sim \alpha_s^0 (am_{h0})^n$ cancel in reduced moments $R_n = \left(\frac{G_n^{QCD}}{G_n^0}\right)^{\frac{1}{n-4}}$
- Artifacts $\sim \alpha_s^m (am_{h0})^n$ persist in R_n , no artifacts $\sim (a\Lambda_{\rm QCD})^n$ relevant
- Artifacts are worse in lower moments ($\tau \sim a$) and for larger masses
- Finite size effects are worse in higher moments $(\tau \sim aN_{\tau})$ and for free theory moments G_n^0 ("quark-antiquark" scattering states, not hadrons)

- Unresolved logs $\Rightarrow R_4$ under- and R_6/R_8 or R_8/R_{10} overestimated
- Boosted coupling $\alpha_s^{\text{lat}} = 10/(4\pi\beta u_0^4)$, where u_0 is the tadpole factor, i.e., an average link U defined via the plaquette, $u_0^4 = \langle \text{Tr } U_{\Box} \rangle /3$
- We extrapolate the reduced moments and ratios to the continuum using

$$R(\alpha_s^{\text{lat}}, am_h) = \sum_{n=1}^N \sum_{j=1}^J c_{nj} \ (\alpha_s^{\text{lat}})^n (am_h)^{2j}, \quad N \leq 3, \ J \leq 5$$

• Similar for larger m_h ; control of continuum limit up to $m_h = 3m_c$

Outline		Quarkonium moments	Static energy	Singlet free energy	Summary
	00000	0000000	000000000	000	00

Continuum limit at the charm scale

11/29

Reduce	ed quarkoni	um moments in	perturbation [·]	theorv	
0	00000	0000000	000000000	000	00
Outline		Quarkonium moments	Static energy	Singlet free energy	

• We compare to the known weak-coupling result¹¹ at order α_{s}^{3}

$$R_n = \begin{cases} r_4 & (n=4) \\ r_n \cdot \frac{m_{h0}}{m_h} & (n \ge 6) \end{cases}, \quad r_n = 1 + \sum_{j=1}^3 r_{nj} \left(m_h, \frac{\mu}{m_h} \right) \alpha_s^j(\mu)$$

- We estimate the uncertainty due to the truncation of the perturbative series with an α_s^4 term, whose coefficient is varied in the range $\pm 5r_{n3}$
- Nonperturbative physics enters only via QCD condensates
- \Rightarrow Leading nonperturbative contribution due to the gluon condensate¹²
 - We determine $\alpha_s(m_h)$ from the nonlinear equations

$$R_4(\alpha_s(m_h)) = 1 + \sum_{j=1}^3 r_{4,j}(m_h, 1) \alpha_s^j(m_h) + \frac{1}{m_h^4} \frac{11}{4} \left\langle \frac{\alpha_s}{\pi} G^2 \right\rangle, \quad \text{etc.} \ ,$$

using the gluon condensate $\left\langle \frac{\alpha_s}{\pi} G^2 \right\rangle = -0.006(12) \,\text{GeV}$ from τ decays¹³

 ¹¹Sturm, JHEP 0809 (2008) 075 Kiyo et al., Nulc. Phys. B 823, 269 (2009) Maier et al., Nucl. Phys. B 824, 1 (2010)
 ¹²Broadhurst et al., Phys. Lett. B **329**, 103 (1994)
 ¹³Geshkenbein et al., Phys. Rev. D **64**, 093009 (2001)

Outline O	Introduction 00000	Quarkonium moments 00000●00	Static energy 000000000	Singlet free energy 000	Summary 00
α_s at t	he heavy qu	uark scale m _h			

$\frac{m_h}{m_c}$	R ₄	R ₆ / R ₈	R ₈ /R ₁₀	av.	$\Lambda_{\text{QCD}}^{N_f=3}$ MeV
1.0	0.3815(55)(30)(22)	0.3837(25)(180)(40)	0.3550(63)(140)(88)	0.3788(65)	315(9)
1.5	0.3119(28)(4)(4)	0.3073(42)(63)(7)	0.2954(75)(60)(17)	0.3099(48)	311(10)
2.0	0.2651(28)(7)(1)	0.2689(26)(35)(2)	0.2587(37)(34)(6)	0.2649(29)	285(8)
3.0	0.2155(83)(3)(1)	0.2338(35)(19)(1)	0.2215(367)(17)(1)	0.2303(150)	284(48)

- Three errors of $\alpha_s(m_h)$ due to the continuum-extrapolated lattice data, the truncation of the perturbative series, and the gluon condensate
- $\bullet\,$ The latter two shrink at the expense of the lattice error for $m_h > m_c$
- All three errors generally increase for the ratios, and α_s from R_8/R_{10} is usually lower than α_s from R_4 or R_6/R_8 for no apparent reason
- Weighted average of the three observables at each scale, and determine the minimal uncertainty such that it has overlapping errors with each
- Consistency of three $\alpha_s(m_h)$ is powerful check for the continuum limit

At $\mu = m_c$: $\alpha_s(M_Z, N_f = 5) = 0.1166(7)$ vs $\alpha_s(M_Z, N_f = 5) = 0.1183(7)^{14}$

¹⁴McNeile et al., Phys.Rev. D82 (2010) 034512

Outline O	Int O(roduction DOOO	Quarkonium mom	ents	Static energy 000000000	Singlet fi 000	ee energy	OO OO
Heavy	qua	rk masses	m _h from	higher	moments	5		
	<i>m</i> , 1							
	$\frac{m_n}{m_c}$	R ₆		F	8	R ₁₀)	
	1.0	1.2740(25)(17)(11)(61)	1.2783(28)((23)(00)(43)	1.2700(72)(4	6)(13)(33)	
	1.5	1.7147(83)(11	(03)(60)	1.7204(42)((14)(00)(40)	1.7192(35)(2	(9)(04)(30)	
	2.0	2.1412(134)(07)	(01)(44)	2.1512(71)	(10)(00)(29)	2.1531(74)(1	9)(02)(21)	
	3.0	2.9788(175)(06)(00)(319)	2.9940(156)((08)(00)(201)	3.0016(170)(1	6)(00)(143)	
	4.0	3.7770(284)(06	(00)(109)	3.7934(159)	(08)(00)(68)	3.8025(152)((15)(00)(47)	
	<u>mb</u>	4 1888(260)(05)	(00)(111)	4 2045(280)	(07)(00)(69)	4 2023(270)((14)(00)(47)	

- Four errors of m_h due to the continuum-extrapolated lattice data, truncation of the perturbative series, the gluon condensate, and $\alpha_s(m_h)$
- $\bullet\,$ The error due to the lattice scale r_1 is not included in the table
- $\bullet\,$ Continuum extrapolation of $R_6,\,R_8,\,{\rm and}\,\,R_{10}$ is unproblematic for all m_h
- At each $m_h \leq 3m_c$ we obtain Λ_{QCD} from m_h and $\alpha_s(m_h)$, and take the unweighted average of $\Lambda_{\text{QCD}}^{N_f=3}$, and use the spread as systematic error

 $\Lambda_{\rm QCD}^{N_f=3} = 301 \pm 16 \,{
m MeV}, \qquad \alpha_s(M_Z, F_f=5) = 0.1161(12),$

• For $m_b > 3m_c$: unweighted average of Λ_{QCD} , then use 4-loop running to obtain $\alpha_s(4m_c)$ and $\alpha_s(m_b)$, matching to 4 or 5 flavors at 1.5 or 4.7 GeV

 $m_c(m_c, N_f = 4) = 1.2672(84) \,\mathrm{GeV}, \quad m_b(m_b, N_f = 5) = 4.188(29) \,\mathrm{GeV}$

15/29

Static energy on the lattice: 2014 vs 2019

¹⁶Bazavov et al. [TUMQCD], *in preparation*

¹⁷Bazavov et al., Phys. Rev. D86 (2012) 114031

Outline			Static energy	Singlet free energy	
0	00000	0000000	00000000	000	00

Wilson loops vs Wilson line correlators in Coulomb gauge

Wilson loops on the lattice

- + Explicit gauge invariance
- Cusp divergences due to corners
- Extra cusp divergences for off-axis separation
- Self-energy divergences due to spatial Wilson lines

Wilson line correlator on the lattice

- Must fix some gauge, i.e. Coulomb gauge
- + No corners, no cusps
- + On- and off-axis separation have same divergence
- + No spatial Wilson lines

Same ground state for both, but Wilson lines technically favorableDistortions at small distance and time for both operators

	0000	00000000	000000000	00000	
00	000	00000000	0000000		
v	Singlet free energy	Static energy	Quarkonium moments	Introduction	Outline

- Combine gauge ensembles with different light sea quark mass
- \Rightarrow No statistically significant quark mass effects up to $r\approx 0.5r_1$
- Fine gauge ensembles with fully suppressed topological tunneling
- ⇒ No statistically significant difference between static energy in different topological sectors up to $r \approx 0.5r_1$ observed¹⁸

Lattice	artifacts in	the static quar	k-antiquark ei	nergy	
	00000	0000000	00000000	000	00
Outline		Quarkonium moments	Static energy	Singlet free energy	

• The static energy at short distances has percent-level lattice artifacts

- Improved gauge action (Lüscher-Weisz) reduced symmetry breaking
- Tree-level improvement: $\frac{E^{\text{lat}}(r)}{E^{\text{cont}}(r)}$ for OGE without running coupling
- $\bullet\,$ After tree-level correction smaller cutoff effects with similar pattern 19
- $\bullet~E$ on fine lattices as continuum estimate, correct for cutoff effects
- Alternatively use only data with $r/a \ge \sqrt{8}$ omitting $r/a = \sqrt{12}$ ¹⁹Bazavov et al, Phys.Rev. D98 (2018) no.5, 054511

Static of	nuark-antig	uark energy in n	erturbation t	heory	
0	00000	0000000	000000000	000	00
Outline		Quarkonium moments	Static energy	Singlet free energy	

• Static energy determined from large-time behavior of Wilson loops

$$E_{0}(r) = \Lambda_{s} - \frac{C_{F}\alpha_{s}}{r} \left(1 + \#\alpha_{s} + \#\alpha_{s}^{2} + \#\alpha_{s}^{3} + \#\alpha_{s}^{3} \ln \alpha_{s} + \#\alpha_{s}^{4} \ln^{2} \alpha_{s} + \#\alpha_{s}^{4} \ln \alpha_{s} + \dots \right) \quad \textcircled{0} \quad 3 \text{loop}$$

• Contributions to the static energy can be understood in pNRQCD

$$E_{\mathbf{0}}(\mathbf{r}) = \Lambda_{\mathbf{s}} - V_{\mathbf{s}}(\mathbf{r}, \mu) - i \frac{g^2}{N_c} V_A^2 \int_0^\infty dt e^{-it(V_O - V_S)} \langle \operatorname{Tr} \mathbf{r} \cdot E(t) \mathbf{r} \cdot E(0) \rangle (\mu) + \dots$$

as to include the singlet potential and an ultrasoft contribution²⁰

- The factorization of the ultrasoft contribution gives rise to the ultrasoft scale μ_{us} , the scale of transitions between singlet and octet
- Cancellation of intermediate scale²¹: $\ln \alpha_s = \ln \left(\frac{\mu}{1/r}\right) + \ln \left(\frac{\alpha_s/r}{\mu}\right)$

 ²⁰Brambilla et al., Nucl. Phys. B566 (2000) 275
 ²¹Brambilla et al., Phys. Rev. D60 (1999) 091502

Outline	Introduction	Quarkonium moments	Static energy	Singlet free energy	Summary
	00000	0000000	000000000	000	00

Fitting lattice results of the static energy (2014)

Different perturbative orders

- χ²/dof reduces for higher orders at shorter distances
- $\Rightarrow \mbox{ Weak-coupling suitable for } static energy for \ r \lesssim 0.15 \, {\rm fm}$
 - At shortest distances little sensitivy to perturbative order

When going to shorter distances

- Statistical errors increase
- Perturbative errors decrease

Perturbative errors estimated from

- scale variation $\nu = \frac{1}{\sqrt{2}r}$ to $\frac{\sqrt{2}}{r}$
- generic higher order term $\pm \frac{\alpha_s^*}{r}$

0.066

0.064

0.062

0.060

r<0.45r

Perturbative uncertainty in the 2019 edition

- Ultrasoft resummation not required use 3loop + unresummed US
- Soft scale variation generates the dominant uncertainty at 3loop
- More conservative soft scale variation in 2019 edition: $\nu = \frac{1}{2r}$ to $\frac{2}{r}$
- Nonmonotonic soft scale dependence is minimal for $\nu \approx 1/(\sqrt{2}r)$
- Soft scale $\nu \approx 1/(2r)$ not suitable for $r \gtrsim 0.1 \,\mathrm{fm}$

0 000000 0000000 000 000 000 00	Outline		Quarkonium moments	Static energy	Singlet free energy	
		00000	0000000	000000000	000	00

α_s from T = 0 in the 2019 edition

- \bullet Restrict lattice data to $r < 0.14\,{\rm fm} \approx 0.45 r_1$
- $\bullet\,$ Combined analysis of lattice data with $a \leq 0.06\,{\rm fm},\,{\rm i.e.},\,a/r_1 \leq 0.2$
- Analysis for $r/a \ge \sqrt{8} \Rightarrow$ lattice artifacts are statistically irrelevant

Outline O	Introduction 00000	Quarkonium mon 00000000		Static energy 00000000	c	inglet free energy 000	Summary OO
System	natic errors i	n the 2019	editior	1			
	$\min(r/a)$	$\max(r) \operatorname{fm}$	α_s	δ^{stat}	$\delta^{ m pert}_{2014}$	$\delta_{2019}^{ m pert}$	
	$\sqrt{8}$	0.097	0.1168	0.0005	$+0.0006 \\ -0.0003$	$+0.0015 \\ -0.0003$	
	$\sqrt{8}$	0.131	0.1167	0.0004	$+0.0008 \\ -0.0003$	$+0.0019 \\ -0.0005$	
	1	0.055	0.1158	0.0007	$^{+0.0003}_{-0.0001}$	$+0.0007 \\ -0.0002$	
	1	0.073	0.1163	0.0006	$^{+0.0004}_{-0.0001}$	$+0.0010 \\ -0.0003$	
	1	0.098	0.1165	0.0005	$+0.0005 \\ -0.0002$	$+0.0012 \\ -0.0003$	
	1	0.131	0.1166	0.0003	+0.0007 -0.0004	$+0.0016 \\ -0.0004$	

- $\bullet\,$ Must keep $r\lesssim 0.1\,{\rm fm}$ to enable the full soft scale variation
- Central value α_s for soft scale $1/(\sqrt{2}r) \le \nu \le \sqrt{2}/r$ is very stable against variation of $\max(r)$
- Include $r/a < \sqrt{8}$ to reduce the impact of scale variation

PRELIMINARY!

 $\Lambda_{\rm QCD}^{N_f=3} = 313^{+18}_{-9} \pm 2(\text{scale}) \,\text{MeV}, \qquad \alpha_s(M_Z, N_f=5) = 0.1165^{+13}_{-6}$

- Singlet free energy for T > 0 with much finer lattice spacing²²
- T > 0 effects exponentially suppressed for $\alpha_s/r \gg T$, i.e., $r/a \ll \alpha_s N_\tau$
- Nonconstant T > 0 effects are numerically small for $r/a \lesssim 0.30 N_{\tau}$

²²Bazavov et al, Phys.Rev. D98 (2018) no.5, 054511

Outline			Static energy	Singlet free energy	
	00000	0000000	00000000	000	00
α_s from	T > 0				

• Restrict T > 0 lattice data to $r/a \leq 3$, i.e., $r \leq 0.25/T$

• Cannot avoid having to correct for the lattice artifacts

Outline O	Introduction 00000		Quarkonium moments 00000000	Static energy 000000000		Singlet free energy		Summary OO
T=0 vs $T>0$								
	N_	$\max(r/a)$	$\max(r)$ fm	Ω.	δ^{stat}	δ^{pert}	Spert	
	64	າ ອ	0.057	0.1157	0,0000	+0.0003	+0.0007	
	64	2	0.078	0.1161	0.0009	-0.0001 + 0.0004	-0.0002 + 0.0009	
	64	2	0.078	0.1163	0.0003	-0.0001 + 0.0004	-0.0003 + 0.0011	
	12	2	0.050	0.1105	0.0000	-0.0002 +0.0002	-0.0003 +0.0005	
	12	2	0.078	0.1152 0.1157	0.0012	-0.0001 +0.0002	-0.0002 + 0.0007	
	12	2	0.091	0.1159	0.0011	+0.0001 +0.0003	-0.0002 +0.0008	
	64	3	0.055	0.1158	0.0007	+0.0003	+0.0007	
	64	3	0.073	0.1163	0.0006	+0.0001 +0.0004	-0.0002 +0.0010	
	64	3	0.096	0.1165	0.0005	+0.0001 +0.0005 -0.0002	-0.0003 +0.0012 -0.0003	
	64	3	0.134	0.1166	0.0004	+0.0002 +0.0007 -0.0004	+0.0016 -0.0004	
	12	3	0.055	0.1161	0.0008	$+0.0002 \\ -0.0001$	$+0.0005 \\ -0.0002$	
	12	3	0.073	0.1163	0.0007	$+0.0003 \\ -0.0001$	+0.0007 -0.0002	
	12	3	0.096	0.1164	0.0006	$^{+0.0003}_{-0.0001}$	$^{+0.0009}_{-0.0002}$	
	12	3	0.133	0.1166	0.0005	$^{+0.0005}_{-0.0004}$	$^{+0.0011}_{-0.0004}$	

Complete agreement between α_s from T = 0 or T > 0

Outline		Quarkonium moments	Static energy	Singlet free energy	Summary
	00000	0000000	000000000	000	•0
Summ	arv				

- We determine the strong coupling constant α_s and the charm and bottom quark masses using moments of PS quarkonium correlators, with 6 heavy quark masses, 11 lattice spacings and 2 sea quark masses
- We determine the strong coupling constant α_s from the static energy using 6 lattice spacings with more conservative perturbative errors
- We determine the strong coupling constant α_s from the singlet free energy using 15 lattice spacings (and two N_{τ} , resp., temperatures)

Quarkonium	2016	2019
$\alpha_s(m_Z, N_f = 5)$	0.11622(84)	0.1161(12)
$\Lambda_{\rm QCD}(N_f=3)$	308(12) MeV	$301(16) { m MeV}$
$m_c(m_c, N_f = 4)$	1.267(12) GeV	1.2672(84) GeV
$m_b(m_b,N_f=5)$	4.184(89) GeV	4.188(29) GeV
Static energy	2014	2019 (PRELIMINARY !)
$\alpha_s(m_Z, N_f = 5)$	0.1166^{+12}_{-8}	0.1165^{+13}_{-6}
$A_{\text{OCD}}(N_{\text{C}}-3)$	215^{+18} MoV	212+19 MoV
11QCD(117 - 5)	515_{-12} wiev	515_8 MeV
Singlet free energy	past	2019 (PRELIMINARY !)
$\frac{\text{Singlet free energy}}{\alpha_s(m_Z, N_f = 5)}$	past NA	2019 (PRELIMINARY !) 0.1164 ⁺¹¹ ₋₇

Outline		Quarkonium moments	Static energy	Singlet free energy	Summary
					00
Running of α_s at low scales					

From left to right

- TUMQCD static energy²³
- $\bullet~{\rm HPQCD}~{\rm quarkonium}~{\rm correlators}^{24}$

²³Bazavov et al., Phys. Rev. D90 (2014) 7, 074038
 ²⁴Chakraborty et al., Phys.Rev. D91 (2015) no.5, 054508
 McNeile et al., Phys.Rev. D82 (2010) 034512
 Allison et al., Phys.Rev. D78 (2008) 054513

Thank you!