

Z_b(10610) and Z_b(10650) and their spin partners from an analysis of experimental line shapes

Vadim Baru

Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, Germany,

ITEP, Moscow, Russia,

P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia

QWG 2019, Turin

in collaboration with

E. Epelbaum, A.A. Filin, C. Hanhart, A.V. Nefediev, Q. Wang and J.-L. Wynen

PRD 98, 074023 (2018) and PRD 99, 094013 (2019)

$Z_b(10610)$ and $Z_b(10650)$ from $\Upsilon(10860)$ decays at Belle

• PDG: $M_{Z_b} = 10607.2 \pm 2.0 \text{ MeV}, \quad \Gamma_{Z_b} = 18.4 \pm 2.4 \text{ MeV}$ $M_{Z'_b} = 10652.2 \pm 1.5 \text{ MeV}, \quad \Gamma_{Z'_b} = 11.5 \pm 2.2 \text{ MeV}$

Bondar et al. PRL108, 122001(2012) Garmash et al.PRL116, 212001(2016) PRD91, 072003 (2015)

dominant decays to open flavour channels

 \Rightarrow a strong hint for a large molecular component in $Z_b(10610)/Z_b(10650)$

Bondar et al. PRD 84, 054010 (2011)

$Z_b(10610)$ and $Z_b(10650)$ from $\Upsilon(10860)$ decays by Belle

• PDG: $M_{Z_b} = 10607.2 \pm 2.0 \text{ MeV}, \quad \Gamma_{Z_b} = 18.4 \pm 2.4 \text{ MeV}$ Ga $M_{Z'_b} = 10652.2 \pm 1.5 \text{ MeV}, \quad \Gamma_{Z'_b} = 11.5 \pm 2.2 \text{ MeV}$

Bondar et al. PRL108, 122001(2012) Garmash et al.PRL116, 212001(2016) PRD91, 072003 (2015)

- Exp. analysis is made using a sum of Breit-Wigner amplitudes:
 - does not account for threshold behavior
 - naive coherent sum violates unitarity
 - reaction dependent, no fits of all data simultaneously
 - How to improve?

Roadmap for analysing near-threshold states

Chiral EFT approach at low energies

- Very similar to nuclear EFT \Rightarrow deuteron as proton-neutron bound state, ...
- Elastic $B^{(*)}B^* \to B^{(*)}B^*$ potential is constructed to a given order in Q/Λ_h Weinberg power counting: Weinberg (1991) Q is a typical soft scale $\Lambda_h \sim 1 \, {\rm GeV}$ p_{typ} m_{π} $p_{\text{typ}} = \sqrt{m \,\delta} \simeq 500 \text{ MeV}, \quad \delta = E_{B^*B^*}^{\text{thr}} - E_{BB^*}^{\text{thr}} = m_* - m \approx 45 \text{ MeV} \sim \text{range of validity}$ include the mass splitting, residual HQSS violation ~ $\Lambda_{QCD}/m_b \ll 1$ $h_b(mP), \Upsilon(nS)$ π $V_{\rm LO}^{\rm eff}$ ++2 S-S wave LECs at O(Q⁰) **Imaginary part** Long range: OPE S-D wave LEC at O(Q²) from inelastic channels
 - Amplitudes: non-perturbative solutions of coupled-channel integral equations

$$T_{\alpha\beta}(E,p,p') = V_{\alpha\beta}^{\text{eff}}(p,p') - \sum_{\gamma} \int \frac{d^3q}{(2\pi)^3} V_{\alpha\gamma}^{\text{eff}}(p,q) G_{\gamma}(M,q) T_{\gamma\beta}(E,q,p')$$

Input and fitting procedure

OPE (as well as all one-pseudoscalar exchange) potentials are parameter free!

Results: pionless theory at LO

PRD 98,074023 (2018)

Results: LO contact terms (CT's) + OPE PRD 98, 074023 (2018)

Residual effect from OPE results in a quantitative improvement of the fit

Results: LO CT's + OPE + NLO CT's PRD 98, 074023 (2018)

Effect from two NLO CT's is subleading, as expected in EFT

Independence of the regulator

we use sharp cutoff $\Lambda \in [0.8 \text{ GeV}, 1.3 \text{ GeV}]$

Residual cutoff dependence is small and expected to be removed by higher-order CT's

Final remarks

Final remarks

Applications: spin partners of $Z_b(10610)/Z_b(10650)$

 $\Upsilon(10860) \not \to \pi \pi W_{b1}, \ \pi \pi W'_{b0}, \ \pi \pi W_{b2}$ $\Upsilon(11020) \to \pi \pi W_{bJ} \to \text{final state}$

 α =1/137 penalty very limited phase space not possible very limited phase space

Applications: spin partners of $Z_b(10610)/Z_b(10650)$

 $\Upsilon(10860) \not \to \pi \pi W_{b1}, \ \pi \pi W'_{b0}, \ \pi \pi W_{b2}$ $\Upsilon(11020) \to \pi \pi W_{bJ} \to \text{final state}$

not possible very limited phase space

Good news: large statistics by BELLE II!

Line shapes for spin partners in $\Upsilon(10860) \rightarrow \gamma W_{bJ} \xrightarrow{}_{\text{PRD 99,094013 (2019)}}$

Line shapes for spin partners in $\Upsilon(10860) \rightarrow \gamma W_{bJ} \xrightarrow{}_{\text{PRD 99,094013 (2019)}}$

Line shapes for spin partners in $\Upsilon(10860) \rightarrow \gamma W_{bJ} \rightarrow \text{final state}$

Pole positions and residues

PRD 99, 094013 (2019)

J^{PC}	State	Threshold	E_B w.r.t. threshold, [MeV]	Residue at pole
1+-	Z_b	$B\bar{B}^*$	$(-2.3 \pm 0.5) - i(1.1 \pm 0.1)$	$(-1.2 \pm 0.2) + i(0.3 \pm 0.2)$
1+-	Z_b'	$B^*\bar{B}^*$	$(1.8 \pm 2.0) - i(13.6 \pm 3.1)$	$(1.5 \pm 0.2) - i(0.6 \pm 0.3)$
0++	W_{b0}	BB	$(2.3 \pm 4.2) - i(16.0 \pm 2.6)$	$(1.7 \pm 0.6) - i(1.7 \pm 0.5)$
0++	W_{b0}^{\prime}	$B^*\bar{B}^*$	$(-1.3 \pm 0.4) - i(1.7 \pm 0.5)$	$(-0.9 \pm 0.3) - i(0.3 \pm 0.2)$
1++	W_{b1}	$B\bar{B}^*$	$(10.2 \pm 2.5) - i(15.3 \pm 3.2)$	$(1.3 \pm 0.2) - i(0.4 \pm 0.2)$
2^{++}	W_{b2}	$B^*\bar{B}^*$	$(7.4 \pm 2.8) - i(9.9 \pm 2.2)$	$(0.7 \pm 0.1) - i(0.3 \pm 0.1)$

- Criterion of relevance for poles: shortest path to the physical region
- Classification of poles: quasi-bound state, virtual states, resonances
 - quasi-bound state affects line shapes below threshold
 - \sim virtual state \Rightarrow enhanced threshold cusp in inelastic line shapes
 - resonance ⇒ peak or enhancement in inelastic line shapes above threshold

Conclusion from our EFT analysis: All Z_b 's and W_{bJ} 's are resonances (without pions \Rightarrow virtual states)

Partial decay widths

Predicted ratios of the decay widths for a given J

J^{PC}	$B\bar{B}$	$B\bar{B}^*$	$B^*\bar{B}^*$	$\chi_{b0}(1P)\pi$	$\chi_{b0}(2P)\pi$	$\chi_{b1}(1P)\pi$	$\chi_{b1}(2P)\pi$	$\chi_{b2}(1P)\pi$	$\chi_{b2}(2P)\pi$	$\eta_{b0}(1S)\pi$	$\eta_{b0}(2S)\pi$
2^{++}	0.06	0.07	0.54			0.03	0.06	0.09	0.16		
1^{++}		0.76		0.03	0.06	0.02	0.04	0.04	0.05	_	_
0^{++}	0.73		0.14			0.05	0.06		—	0.002	0.01

⇒ largest fractions to nearby elastic channels

Predicted ratios of the elastic decay widths for different J

$$\Gamma_{B\bar{B^*}({}^{3}S_1)}^{1^{++}}:\Gamma_{B^*\bar{B^*}({}^{5}S_2)}^{2^{++}}:\Gamma_{B\bar{B}({}^{1}S_0)}^{0^{++}}:\Gamma_{B^*\bar{B^*}({}^{1}S_0)}^{0^{++}}\approx 15:12:5:1$$

$$\Gamma_{B\bar{B}(^{1}D_{2})}^{2^{++}}:\Gamma_{B\bar{B}^{*}(^{3}D_{2})}^{2^{++}}:\Gamma_{B^{*}\bar{B}^{*}(^{1}S_{0})}^{0^{++}}\approx 3:3:2$$

⇒ 1⁺⁺ and 2⁺⁺ elastic channels have the largest elastic widths

Summary and Perspectives

- Line shapes in c and b-sectors can be systematically analysed within an EFT approach consistent with chiral and heavy quark symmetries, analyticity and unitarity
- A combined analysis of the line shapes $\xrightarrow{}$ \longrightarrow poles and residues of $Z_b^{(')}$ are extracted $\xrightarrow{}$

$$\Upsilon(10860) \to \pi Z_b^{(\prime)} \to \pi \alpha \quad \text{with} \quad \frac{\chi^2}{\text{dof.}} \lesssim 1$$

$$\alpha = B\bar{B}^*, \ B^*\bar{B}^*, \ h_b(1P)\pi, \ h_b(2P)\pi$$

- Employing HQSS line shapes for spin partners of $Z_b^{(')}$ states and their poles are predicted parameter free $\implies W_{bJ}$ can be searched for at Belle II
- Effects from pion cloud have visible impact on the observables \implies poles of $Z_b^{(')}$ and W_{bJ} 's are above threshold resonances (vs virtual states w/o pions)

Summary and Perspectives

- Line shapes in c and b-sectors can be systematically analysed within an EFT approach consistent with chiral and heavy quark symmetries, analyticity and unitarity
- A combined analysis of the line shapes \implies poles and residues of $Z_b^{(')}$ are extracted

$$\Upsilon(10860) \to \pi Z_b^{(\prime)} \to \pi \alpha \quad \text{with} \quad \frac{\chi^2}{\text{dof.}} \lesssim 1$$
$$\alpha = B\bar{B}^*, \ B^*\bar{B}^*, \ h_b(1P)\pi, \ h_b(2P)\pi$$

- Employing HQSS line shapes for spin partners of $Z_b^{(')}$ states and their poles are predicted parameter free $\implies W_{bJ}$ can be searched for at Belle II
- Effects from pion cloud have visible impact on the observables \implies poles of $Z_b^{(')}$ and W_{bJ} 's are above threshold resonances (vs virtual states w/o pions)
- Ongoing :
- ► Inclusion of S-wave $\pi\pi$ FSI \implies access to data on $\Upsilon(5S) \rightarrow \Upsilon(mS)\pi\pi$
- ▶ Include pion loop contributions at NLO (no new params.) → check convergence, reduce errors
- Application to the charm sector: yes!
 But no reliable predictions employing *flavour* symmetry for heavy-heavy molecules is possible!
 VB, Epelbaum, Gegelia, Hanhart, Meißner, Nefediev Eur. Phys. J. C79 (2019)

Backup

Extracting the poles

W/O inelastic channels two-channel problem: BB* and B*B*

Conformal mapping of 4 RS surface to a single sheet surface in omega-plane:

$$E = \frac{k_1^2}{2\mu_1} = \frac{k_2^2}{2\mu_2} + \delta = \frac{\delta}{4} \left(\omega^2 + \frac{1}{\omega^2} + 2 \right)$$

Only the poles close to the physical region are relevant

Contact + one-pion exchange (OPE) interactions

Extended basis states:

$$\begin{array}{rcl} 0^{++} : & \{ P\bar{P}({}^{1}S_{0}), V\bar{V}({}^{1}S_{0}), V\bar{V}({}^{5}D_{0}) \}, \\ 1^{+-} : & \{ P\bar{V}({}^{3}S_{1}, -), P\bar{V}({}^{3}D_{1}, -), V\bar{V}({}^{3}S_{1}), V\bar{V}({}^{3}D_{1}) \}, \\ 1^{++} : & \{ P\bar{V}({}^{3}S_{1}, +), P\bar{V}({}^{3}D_{1}, +), V\bar{V}({}^{5}D_{1}) \}, \\ 2^{++} : & \{ P\bar{P}({}^{1}D_{2}), P\bar{V}({}^{3}D_{2}), V\bar{V}({}^{5}S_{2}), V\bar{V}({}^{1}D_{2}), V\bar{V}({}^{5}D_{2}), V\bar{V}({}^{5}G_{2}) \} \end{array}$$

- Coupled-channel transitions in S, D and even G-waves
- Pions enhance HQSS violation due to V-P mass splitting P = D and B $V = D^* \text{ and } B^*$ $P\bar{P}$ and $P\bar{V}$ intermediate states can go on shell $\bar{V} = P + \bar{V} V$ $\bar{V} = P + \bar{V} V$ $\Rightarrow 2^{++} V\bar{V}$ states acquire finite widths $V = P + \bar{V} V$ $V = V + \bar{V} + \bar{V}$