Recent results from \varUpsilon decays at BABAR

Claudia Patrignani representing the BABAR Collaboration

ALMA MATER STUDIORUM Università di Bologna Campus di Rimini

Università di Bologna and I.N.F.N. Claudia.Patrignani@bo.infn.it

Quarkonium 2019 13th International Workshop on Heavy Quarkonium

Searches for

- gluonium in radiative $\Upsilon(1S)$ decays
- stable six-quark states in $\Upsilon(2S)$ and $\Upsilon(3S)$ decays

The BABAR experiment

Data samples

As of 2008/04/11 00:00

Search for gluonium in quarkonia radiative decays

 $J^{PC}=0^{++}$ glueball expected in the region $M\approx 1.5\div 2~{\rm GeV}$

Searched extensively in J/ψ radiative decays

in radiative $\Upsilon(1S)$ decays ≈ 25 reduction (quark mass and width differences) see e.g. Ochs, J. Phys. G 40, 043001 (2013)

First study of $\Upsilon(1S)$ radiative decays from CLEO PRD 73, (2006) 032001 large backgrounds from $e^+e^- \rightarrow \gamma$ Vector

 $\Upsilon(1S)
ightarrow \gamma h^+ h^-$ from $\Upsilon(2S), \Upsilon(3S)$

Exploit $\Upsilon(2S)$ and $\Upsilon(3S)$ tagging: fully reconstruct

 $\Upsilon(3S), \Upsilon(2S) \to \pi_s^+ \pi_s^- \Upsilon(1S) \to \pi_s^+ \pi_s^- (\gamma h^+ h^-)$

C. Patrignani

Quarkonium 2019 13-17 May, Torino

$\Upsilon(1S) \rightarrow \gamma h^+ h^-$: hadronic spectrum A rich $\pi^+\pi^-$ and K^+K^- spectrum

"simple" fit with S-wave plus interfering BW (+ $\rho^0(770)$ background)

some of the resonances clearly visible!

S-wave = $|BW_{f_0(500)}(m) + cBW_{f_0(980)}(m)e^{i\phi}|^2$

, The fraction of S-wave associated with the $f_0(500)$ is $(27.7\pm3.1)\%$

PRD 97 (2018) 112006

$\Upsilon(1S) ightarrow \gamma h^+ h^-$: Legendre moments

Assuming only S and D wave
$$\begin{split} &\sqrt{4\pi}\langle Y^0_0\rangle = S^2 + D^2, \\ &\sqrt{4\pi}\langle Y^0_2\rangle = 2SD\cos\phi_{SD} + 0.639D^2, \\ &\sqrt{4\pi}\langle Y^0_4\rangle = 0.857D^2, \end{split}$$

extract amplitudes as a function of mass (model independent!)

$\Upsilon(nS) \rightarrow \pi_s^+ \pi_s^- \Upsilon(1S) \rightarrow \pi_s^+ \pi_s^- \gamma h^+ h^-$ angular analysis PRD 97 (2018) 112006

Full angular analysis of the decay chain in the helicity formalism (see backup) in three different mass ranges

Fit results for the yields and helicities

C. Patrignani

Resonance	Mass range (GeV/ c^2)	Events	Spin	$ A_{00} ^2/ A_{01} ^2$		
$\pi\pi S$ -wave	0.6–1.0	104	0	0.09 ± 0.33		
$\begin{array}{l} f_2(1270) \to \pi^+\pi^- \\ f_2'(1525) \to K^+K^- \\ f_0(1500) \to K^+K^- \end{array}$	1.092–1.460 1.424–1.620	280 36 40	2 2 0	$\begin{aligned} & A_{01} ^2 / A_{00} ^2 \\ &1.07 \pm 0.31 \\ &47.9 \pm 10.8 \\ &0.04 \pm 0.07 \end{aligned}$	$\begin{array}{c} C_{11} ^2/ C_{10} ^2 \\ 0.00 \pm 0.03 \\ 0.42 \pm 0.36 \end{array}$	$\begin{array}{c} C_{12} ^2 / C_{10} ^2 \\ 0.29 \pm 0.08 \\ 1.43 \pm 0.35 \end{array}$
Reweight yields by efficiency to obtain \mathcal{B} 's: $w_R = \frac{\sum_{i=1}^{N_R} 1/\epsilon_i (\cos \theta_H, \cos \theta_R)}{N_R}$						

Quarkonium 2019 13-17 May, Torino

$\mathcal{B}(\Upsilon(1S) \to \gamma R)$

Normalize to known $\Upsilon(3S)$ and $\Upsilon(2S)$ \mathcal{B} 's

$$\mathcal{B}(R) = \frac{N_R(\Upsilon(nS) \to \pi_s^+ \pi_s^- \Upsilon(1S)(\to R\gamma))}{N(\Upsilon(nS) \to \pi_s^+ \pi_s^- \Upsilon(1S)(\to \mu^+ \mu^-))} \times \mathcal{B}(\Upsilon(1S) \to \mu^+ \mu^-)$$

based on observed yields for the normalization modes

$$N(\Upsilon(2S) \to \pi_s^+ \pi_s^- \Upsilon(1S)(\to \mu^+ \mu^-)) = (4.35 \pm 0.12_{\rm sys}) \times 10^5$$

$$N(\Upsilon(3S) \to \pi_s^+ \pi_s^- \Upsilon(1S)(\to \mu^+ \mu^-)) = (1.32 \pm 0.04_{\rm sys}) \times 10^5$$

Good agreement BABAR/CLEO for $f_J(1500)$ and $f_2(1270)$

Resonance	$\mathcal{B}(10^{-5})~(B\!\!AB\!\!AR)$	CLEO
$\pi\pi$ S-wave	$4.63 \pm 0.56 \pm 0.48$	$(f_0(980)) \ 1.8^{+0.8}_{-0.7} \pm 0.1$
$f_2(1270)$	$10.15 \pm 0.59 \ {}^{+0.54}_{-0.43}$	$10.2 \pm 0.8 \pm 0.7$
$f_0(1710) \rightarrow \pi\pi$	$0.79 \pm 0.26 \pm 0.17$	
$f_J(1500) \rightarrow K\bar{K}$	$3.97 \pm 0.52 \pm 0.55$	$3.7^{+0.9}_{-0.7} \pm 0.8$
$f_2'(1525)$	$2.13 \pm 0.28 \pm 0.72$	
$f_0(1500) \rightarrow K\bar{K}$	$2.08 \pm 0.27 \pm 0.65$	
$f_0(1710) \rightarrow K\bar{K}$	$2.02 \pm 0.51 \pm 0.35$	$0.76 \pm 0.32 \pm 0.08$

First observation (5.7 σ) of $\Upsilon(1S)$ radiative decays to $f_0(1710)$:

$$\frac{\mathcal{B}(f_0(1710) \to \pi\pi)}{\mathcal{B}(f_0(1710) \to K\bar{K})} = 0.64 \pm 0.27_{\rm stat} \pm 0.18_{\rm sys}$$

Radiative decays $\Upsilon(1S) ightarrow \gamma h^+ h^-$

In the $\Upsilon(1S)$ radiative decays to $\pi^+\pi^-$ and K^+K^- final state we observe

- broad S-wave component in J/ψ decays impossible to study due to irreducible $\pi^+\pi^-\pi^0$ background
- $f_0(980)$, $f_2(1270)$, $f_0(1500)$, $f_2'(1525)$ and $f_0(1710)$ resonances

the scalars include many of the "gluonium" candidates considered by theorists and the $\mathcal B$'s we measure will be useful to shed some more light:

- $\mathcal{B}(\Upsilon(1S)
 ightarrow \gamma f_0(1710))$ predicted $\mathcal{O}(10^{-4})$ R. Zhu, JHEP 1509, 166 (2015)
 - we have observed it for the first time at a rate that is consistent either with expectations for gluonium or with $s\bar{s}$ dominance
- $\mathcal{B}(\varUpsilon(1S) o \gamma f_0(1500)) pprox 2 \div 4 imes 10^{-5}$ He et al., PRD 66, 074015 (2002)
 - consistent with our measurement
- $\mathcal{B}(\varUpsilon(15) o \gamma f_0(1370)) pprox 3 imes 10^{-5}$ Zhu, JHEP 1509, 166 (2015)
 - evidence for $f_0(1370)$) is controversial, but prediction in the range for our measurement of $\pi^+\pi^-$ -S-wave

Stable six-quark state?

- LQCD calculations suggest tightly bound *uuddss* state could be stable or nearly stable Beane et al, PRD 87, 034506 (2013) Q = 0; B = 2; S = -2
 - $\mathcal{S}:$ scalar, flavour singlet, very compact: r=0.1÷0.4 fm

$$m \approx 1.2 \div 1.86 \text{ GeV}$$

- if $m < M_A + M_P + m_e$ only doubly weak decays allowed
 - lifetime on the cosmological scale

- if $m < 2 M_p$ is stable
- Experimentally not excluded by earlier searches
- NOT the same as the loosely bound H-dibaryon proposed by Jaffe PRL 38 (1977) 195, PRL 38 (1977) 617 with $M{\approx}2150~{\rm MeV}$ and typical weak lifetime excluded by many searches
 - even suggested as possible dark matter candidate
 - (G. Farrar, arXiv:1708.08951,arXiv:1805.03723) but not everybody agrees

(eg. Kolb, Turner, PRD 99, 063519 (2019) ,

Gross et al. PRD 98, 063005 (2018) , McDermott et al PRD 99, 035013 (2019))

Search for $\Upsilon \to \bar{\Lambda}\bar{\Lambda}\mathcal{S}$ in BABAR

If S is stable it might interact hadronically in the detector, but signature not easy – better to just reconstruct the two Λ 's

 \Longrightarrow Search for peak in missing mass distribution recoiling against the two $\Lambda{}'{\rm s}$

Blind analysis based on 90×10⁶ $\Upsilon(2S)$ and 110×10⁶ $\Upsilon(3S)$ reconstructing $\Lambda \rightarrow p\pi^-$ ($\mathcal{B} \approx 0.64$)

- \implies Select events with two \varLambda 's of same strangeness and nothing else
 - p and π from both Λ 's must be positively identified
 - A's must have a significant flight length and point back to the interaction vertex
 - at most one additional track candidate and little extra energy outside a cone around S direction ($E_{extra} < 0.5 \text{ GeV}$)

Background in $\Upsilon \to \bar{\Lambda}\bar{\Lambda}S$

Dominant source from $e^+e^- \to \Lambda\Lambda\bar{\Lambda}\bar{\Lambda}(X)$ where the two other Λ 's of same strangeness decay to $n\pi^0$... Cross section not known

B decays do not contribute to background: $\Upsilon(4S)$ data can be used to model background in continuum

Loose χ^2 cut (<25) on kinematic fit constraining the two Λ 's to the same vertex and to their known mass

scale $\Upsilon(2S)$ and $\Upsilon(3S)$ MC background to match what observed in "sideband" region with $E_{extra} > 0.5~{\rm GeV}$

PRL 122 (2019) 072002

Upper limit on $\mathcal{B}(\Upsilon \to \bar{\Lambda}\bar{\Lambda}\mathcal{S})$

Only 4 events with $E_{extra} < 0.5 {
m ~GeV}$

– None in the ${\mathcal S}$ mass region

Upper limit from profile likelihood including systematic ($\approx 10 - 15\%$) as a function of mass separately for $\Upsilon(2S)$ and $\Upsilon(3S)$ and combined assuming same partial width

$${\cal B}(arphi
ightarrow ar{\Lambda} ar{\Lambda} {\cal S}) < (1.2 \div 1.4) \cdot 10^{-7}$$

Conclusions

- Radiative decays $\Upsilon(1S) \to \gamma h^+ h^-$ measured in tagged $\Upsilon(1S)$ from $\Upsilon(3S)$ and $\Upsilon(2S)$ dipion transitions
 - Clean samples, not affected by $e^+e^- \to \gamma \ V\!ector$ background
 - historically a good place to search for gluonium
 - numerous resonances observed in $\pi^+\pi^-$ and K^+K^- final states
 - $f_0(1710)$ observed for the first time

PRL 122 (2019) 072002

- Search for stable exa-quark \mathcal{S} , *uuddss*, in $\Upsilon(2S)$ and $\Upsilon(3S)$ decays
 - \bullet LQCD suggest ${\mathcal S}$ can be a tightly bound state
 - extremely long lifetime if $m < M_{\Lambda} + M_{\rho} + M_{e}$, stable if $m < 2 N_{\rho}$
 - not excluded by earlier searches whether it's dark matter candidate or not, search for it!
 - Upper limit on $\mathcal{B}(\Upsilon \to \bar{\Lambda}\bar{\Lambda}S) < (1.2 \div 1.4) \cdot 10^{-7}$ stringent limit, but other modes are possible ...

Backup

$$\Upsilon(nS) \rightarrow \pi_s^+ \pi_s^- \Upsilon(1S) \rightarrow \pi_s^+ \pi_s^- \gamma h^+ h^-$$
 angular analysis

The slow pions in

$$\Upsilon(nS) o \pi_s^+ \pi_s^- \, \Upsilon(1S)$$

compatible with S-wave (as expected)

C. Patrignani

In each reasonance region maximum likelihoood fit to signal+ background (from tail of nearby resonances)

$$\begin{split} \mathcal{L} = & \prod_{n=1}^{N} \bigg[f_{\text{sig}} \frac{\epsilon(\cos\theta_{H}, \cos\theta_{\gamma}) W_{s}(\theta_{H}, \theta_{\gamma})}{\int W_{s}(\theta_{H}, \theta_{\gamma}) \epsilon(\cos\theta_{H}, \cos\theta_{\gamma}) d\cos\theta_{H} d\cos\theta_{\gamma}} \\ & + (1 - f_{\text{sig}}) \frac{\epsilon(\cos\theta_{H}, \cos\theta_{\gamma}) W_{b}(\theta_{H}, \theta_{\gamma})}{\int W_{b}(\theta_{H}, \theta_{\gamma}) \epsilon(\cos\theta_{H}, \cos\theta_{\gamma}) d\cos\theta_{H} d\cos\theta_{\gamma}} \bigg], \end{split}$$

with angular distribution for J=0 or J=2 from arXiv:1804.04044

$$\begin{split} W_0(\theta_\gamma) = & \frac{dU(\theta_\gamma)}{d\cos\theta_\gamma} = \frac{3}{8} |C_{10}|^2 |E_{00}|^2 (|A_{00}|^2 + 3|A_{01}|^2 \\ & - (|A_{00}|^2 - |A_{01}|^2)\cos 2\theta_\gamma). \end{split}$$

$$\begin{split} V_{2}(\theta_{T},\theta_{H}) &= \frac{dU(\theta_{T},\theta_{H})}{d\cos\theta_{T}} = \frac{1}{1024} |E_{00}|^{2} [6|A_{01}|^{2} (22|C_{10}|^{2} + 8|C_{11}|^{2} + 9|C_{12}|^{2}) \\ &\quad + 2|A_{00}|^{2} (22|C_{10}|^{2} + 24|C_{11}|^{2} + 9|C_{12}|^{2}) + 24(|A_{00}|^{2} + 3|A_{01}|^{2}) (2|C_{10}|^{2} - |C_{12}|^{2}) \cos 2\theta_{H} \\ &\quad + 6(|A_{00}|^{2} (6|C_{10}|^{2} - 8|C_{11}|^{2} + |C_{12}|^{2}) + |A_{0}|^{2} (18|C_{10}|^{2} - 8|C_{11}|^{2} + 3|C_{12}|^{2})) \cos 4\theta_{H} \\ &\quad - 2(|A_{00}|^{2} - |A_{01}|^{2}) \cos 2\theta_{T} (22|C_{10}|^{2} - 24|C_{11}|^{2} + 9|C_{12}|^{2} + 12(2|C_{10}|^{2} - |C_{12}|^{2}) \cos 2\theta_{H} \\ &\quad + 3(6|C_{10}|^{2} + 8|C_{11}|^{2} + |C_{12}|^{2}) \cos 4\theta_{H})]. \end{split}$$

Can be expressed in terms of longl/trans polarization of $\Upsilon(1S)$ and γ (1 or 3 free parameters for S/D)

Tightly bound six-quark state?

LQCD calculations for binding energies for various six-quark systems in the limit of SU(3)-flavour, $m_\pi=m_K\approx 800~{\rm MeV}$

Systematic uncertainties on $\Upsilon \to \bar{\Lambda}\bar{\Lambda}S$

PRL 122 (2019) 072002

Main sources from

- signal modelling: production amplitudes angular distribution; interaction with detector
- Data/MC differences in reconstruction

S angular distribution	5 – 8%
S particle type	8–11%
Λ reconstruction	4% per Λ
MC statistics	2%
$\mathcal{B}(\Lambda \to \rho \pi^-)$	1.6%
proton PID	1% per proton
Number of Y	0.6%

