Bottomonium decays and $e^+e^- \rightarrow \omega \chi_{bJ}$ scan at Belle

Speaker: Junhao Yin

On behalf of Belle Collaboration

Outline

• $\Upsilon(nS) \to Z_c^{(\prime)} Z_c^{(\prime)}$

• $\Upsilon(1,2,3S) \rightarrow \Omega^- + X$

•
$$e^+e^- \rightarrow \omega \chi_{bJ}$$
 and $\phi \chi_{bJ}$

Integrated luminosity of B factories

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

 $\Upsilon(1,2S)/e^+e^- \rightarrow Z_c^+ Z_c^{(\prime)-}$ 112004 (2018)

Double Z_c production provide experimental inputs PLB 764,174(2017); PRD 91, 114025 (2015).

Z_c states	Z_c labels in Ref. [23]	Mass	Width	
$Z_{c}^{+}(3900)$	$X^{+}(3900)$	3886.6 ± 2.4	28.1 ± 2.6	
$Z_{c}^{+}(4200)$	$X^{+}(4200)$	4196_{-32}^{+35}	370^{+100}_{-150}	
$Z_{c1}^+(4050)$	$X^{+}(4050)$	4051_{-40}^{+24}	82^{+50}_{-28}	
$Z_{c2}^{+}(4250)$	$X^{+}(4250)$	4248^{+190}_{-50}	177^{+320}_{-70}	
$Z_{c}^{+}(4050)$	$X^{+}(4055)$	4054 ± 3.2	45 ± 13	
$Z_{c}^{+}(4430)$	$X^{+}(4430)$	4478^{+15}_{-18}	181 ± 31	Re

> Tag one Z_c with $\pi^{\pm}J/\psi, \pi^{\pm}\chi_{c1}, \pi^{\pm}\psi(2S)$

Ref. [23] cited PDG here

 \succ The missing mass should be within the mass window of $Z_c^{(\prime)}$

- Use $\Upsilon(1S) \rightarrow Z_c + X$, $Z_c \rightarrow \pi^{\pm}J/\psi$ as an example
- The recoiling mass should be satisfy
 - $\left| M_{miss} m_{Z_c(3900)} \right| < 0.03 \text{ GeV/c}^2$
 - or $\left| M_{miss} m_{Z_c(4200)} \right| < 0.21 \text{ GeV/c}^2$

MC simulation for (a) $Z_c(3900)Z_c(3900)$ (b) $Z_c(4200)Z_c(4200)$ (c) $Z_c(3900)Z_c(4200)$

Fit to $M(\pi^{\pm}J/\psi)$ after missing mass requirement

> No evident signal is found in every signal channel.

Upper limits are obtained at 90% C.L.

 $B(\Upsilon(1,2S) \rightarrow Z_c Z_c)$

Didn't deny the expectation, which is much lower than the measured production cross section.

Observation of an excited Ω^- in $\Upsilon(1,2,3S)$ decays prl 121, 052003 (2018)

 $M = 2012.4 \pm 0.7 \pm 0.6 \text{ MeV/c}^2$, $\Gamma = 6.4^{+2.5}_{-2.0} \pm 1.6 \text{ MeV}$

Independent fit result shows good agreement with that from simultaneous fit. $340 \text{ MeV}/c^2$ higher than the ground state

Data	Mode	Mass (MeV/ c^2)	Yield	$\Gamma(MeV)$	$\chi^2/d.o.f.$	n_{σ}
Υ(1 <i>S</i> , 2 <i>S</i> , 3 <i>S</i>)	$\Xi^0 K^-, \ \Xi^- K_S^0$ (simultaneous)	2012.4 ± 0.7	$242 \pm 48, 279 \pm 71$	$6.4^{+2.5}_{-2.0}$	227/230	8.3
$\Upsilon(1S, 2S, 3S)$	$\Xi^0 K^-$	2012.6 ± 0.8 2012.0 ± 1.1	239 ± 53	6.1 ± 2.6	115/114	6.9
Other Other	$\Xi^{0}K^{-}$ $\Xi^{-}K^{0}$	2012.0 ± 1.1 2012.4 (fixed) 2012.4 (fixed)	280 ± 87 209 ± 63 153 ± 89	6.8 ± 3.3 6.4 (fixed) 6.4 (fixed)	101/114 102/116 133/116	4.4 3.4 1.7

Check with other datasets.

More data, less signal.

Primarily in the decay of $\Upsilon(1,2,3S)$ PRL 121, 052003 (2018)

 $\Upsilon(5S) \rightarrow \omega \chi_{bI}$

 \succ Use $\Upsilon(5S)$ on-resonance data.

 \succ Fully construction, $\chi_{bJ} \rightarrow \Upsilon(1S)\gamma$, $\Upsilon(1S) \rightarrow l^+l^-$

 $\gg \omega \chi_{b1/b2}$ are observed for the first time in e^+e^- annihilation.

 \triangleright Also, very clear signal of $\pi^+\pi^-\pi^0\chi_{b1,2}$ (c) Within signal regic Data 10 Lent 12σ Total GeV/c² (a) Events/(10 MeV/c²) Background π^0 sidebands 9.85 9.9 9.95 ğ.8 10 χ_{b0} M(γr(1S)) (GeV/c²) 5.9*σ* М(π⁺п'0 20 (d) Background ut of signal i 9.95 9.8 9.85 9.9 10 9.6 9.8 10 10.2 $M(\gamma \Upsilon(1S))$ (GeV/c²) vents/(M(γr(1S)) (GeV/c²) 9.9 9.95 10 M(γr(1S)) (GeV/c²)

PRL 113, 142001(2014)

Previous result

From the 2D fit of the $M(\pi^+\pi^-\pi^0) vs M(\gamma Y(1S))$:

PRL 113, 142001(2014)

Mode	Yield	$\Sigma (\sigma)$	ε (%)	σ_B (pb)	$B(10^{-3})$	$\sigma^{(1)}_{ m sys}$ (%)	$\sigma^{(2)}_{ m sys}$ (%)
$\pi^+\pi^-\pi^0\chi_{b0}$	< 13.6	1.0	6.43	< 3.1	< 6.3	25	24
$\pi^{+}\pi^{-}\pi^{0}\chi_{b1}$	80.1 ± 9.9	12	6.61	$0.90 \pm 0.11 \pm 0.13$	$1.85 \pm 0.23 \pm 0.23$	14	12
$\pi^{+}\pi^{-}\pi^{0}\chi_{b2}$	28.6 ± 6.5	5.9	6.65	$0.57 \pm 0.13 \pm 0.08$	$1.17 \pm 0.27 \pm 0.14$	14	12
$\omega \chi_{b0}$	< 7.5	0.5	6.35	< 1.9	< 3.9	29	28
$\omega \chi_{b1}$	59.9 ± 8.3	12	6.53	$0.76 \pm 0.11 \pm 0.11$	$1.57 \pm 0.22 \pm 0.21$	14	13
$\omega \chi_{b2}$	12.9 ± 4.8	3.5	6.56	$0.29 \pm 0.11 \pm 0.08$	$0.60 \pm 0.23 \pm 0.15$	26	25
$(\pi^+\pi^-\pi^0)_{\mathrm{non-}\omega}\chi_{b0}$	< 10.7	0.4	6.68	< 2.3	< 4.8	41	41
$(\pi^{+}\pi^{-}\pi^{0})_{non-\omega}\chi_{b1}$	23.6 ± 6.4	4.9	6.88	$0.25 \pm 0.07 \pm 0.06$	$0.52 \pm 0.15 \pm 0.11$	21	20
$(\pi^+\pi^-\pi^0)_{\operatorname{non}-\omega}\chi_{b2}$	15.6 ± 5.4	3.1	6.91	$0.30 \pm 0.11 \pm 0.14$	$0.61 \pm 0.22 \pm 0.28$	45	45

 $\frac{\sigma(e^+e^- \rightarrow \omega \chi_{b2})}{\sigma(e^+e^- \rightarrow \omega \chi_{b1})} = 0.38 \pm 0.16 \pm 0.09, \text{ where the common systematic}$ uncertainties cancel.

 $\succ X_b$, X(3872) counterpart in the bottomonium sector.

> X_b is above $\omega \Upsilon(1S)$ threshold, should be a more promising (PRD 88, 054007(2013)).

Update of $\Upsilon(5S) \rightarrow \omega \chi_{bI}$

Full energy scan data

PRD 98, 091102(R) (2018)

Do not separate ω and $\pi^+\pi^-\pi^0$, nor χ_{b1} and χ_{b2}

Assume the transition is from $\Upsilon(5S)$ and $\Upsilon(6S)$

- $\geq B[\Upsilon(5S) \to \pi^+ \pi^- \pi^0 \chi_{bJ}] = (2.5 \pm 0.6 \pm 2.1 \pm 0.7) \times 10^{-3}$
- $\succ B \left[\Upsilon(6S) \rightarrow \pi^+ \pi^- \pi^0 \chi_{bJ} \right] = (8.7 \pm 4.3 \pm 6.1^{+4.5}_{-2.5}) \times 10^{-3}$
- Main systematic uncertainty rises from the assumption. Consistent with previous work.

$$R_{21} \equiv \frac{B[\Upsilon(6S) \to \omega \chi_{b2}]}{B[\Upsilon(6S) \to \omega \chi_{b1}]} = 0.4 \pm 0.2, (\sim 1.72 \text{ from the prediction})$$

EPJC 77, 165(2017)

12

PRD 98, 091102(R) (2018)

Summary

- A new excited Ω baryon state is observed
 - $M = 2012.4 \pm 0.7 \pm 0.6 \text{ MeV/c}^2$, $\Gamma = 6.4^{+2.5}_{-2.0} \pm 1.6 \text{ MeV}$
 - More likely to be a $\frac{3}{2}^{-}$ state described in Ref.[PRD 34, 2809 (1986)]
- Double exotic states search is performed
 - Not in contradiction with the expectation
- $\pi^+\pi^-\pi^0\chi_{bJ}$ is observed in $\Upsilon(6S)$ energy region
 - Make Analogy between $\Upsilon(5,6S)$ and $\psi(4660)$. Will there be more interesting physics?