

Bottomonium Transitions at Belle

Bryan Fulsom

Pacific Northwest National Laboratory

13th International Workshop on Heavy Quarkonium

Torino, ITALY

2019-05-17

PNNL is operated by Battelle for the U.S. Department of Energy

Overview

- η hadronic transitions
 - Observed with enhanced rates
 - Spectroscopic search for states
- Measurement of η^{\prime} transitions
 - η observed, no past results for η'
 - No clear theoretical predictions
- Radiative decays
 - Well-studied, many theoretical predictions
 - Hyperfine splitting: $\Delta(m(\Upsilon(1S))-m(\eta_b(1S))$

- η hadronic transitions
 - Observed with enhanced rates
 - Spectroscopic search for states
- Measurement of η^{\prime} transitions
 - η observed, no past results for η'
 - No clear theoretical predictions
- Radiative decays
 - Well-studied, many theoretical predictions
 - Hyperfine splitting: $\Delta(m(\Upsilon(1S))-m(\eta_b(1S))$

Overview

- η hadronic transitions
 - Observed with enhanced rates
 - Spectroscopic search for states
- Measurement of η^{\prime} transitions
 - η observed, no past results for η'
 - No clear theoretical predictions
- Radiative decays
 - Well-studied, many theoretical predictions
 - Hyperfine splitting: $\Delta(m(\Upsilon(1S))-m(\eta_b(1S))$

- η hadronic transitions
 - Observed with enhanced rates
 - Spectroscopic search for states
- Measurement of η^{\prime} transitions
 - η observed, no past results for η'
 - No clear theoretical predictions
- Radiative decays
 - Well-studied, many theoretical predictions
 - Hyperfine splitting: $\Delta(m(\Upsilon(1S))-m(\eta_b(1S)))$

The Belle Experiment

- Vital statistics
 - KEK, Tsukuba, Japan
 - Operated 1999-2010
 - ~1 ab⁻¹ collected
 - ~500 members, 21 countries
 - >500 publications
- Many contributions to qq study
 - Charmonium states (Vinokurova)
 - Energy scan results (Mizuk)
 - Bottomonium decays (Yin)

• Now upgraded to Belle II, at the next generation B-Factory

Aerogel Cherenkov cnt. n=1.015~1.030

3.5 GeV e⁺

Central Drift Chamber small cell +He/C₂H₆

 μ / K_L detection 14/15 lyr. RPC+Fe

$\Upsilon(5S) \rightarrow \eta b\bar{b}$

EPJC 78, 633 (2018)

Bottomonium Transitions at Belle / QWG 2019 / 2019.05.17 / Bryan FULSOM (PNNL)

$\Upsilon(5S) \rightarrow \eta b \overline{b}$: Analysis Motivation

- Decays
 - Heavy Quark Spin Symmetry expected to be reliable
 - QCD Multipole Expansion predicts dominance of $\pi\pi$ transitions over η

$$\mathcal{R}^{\eta S}_{\pi\pi S}(n,m) = \frac{\mathcal{B}[\Upsilon(nS) \to \eta \Upsilon(mS)]}{\mathcal{B}[\Upsilon(nS) \to \pi^+\pi^-\Upsilon(mS)]} \approx 10^{-3}$$

- Confirmed for $\Upsilon(2S)$ and $\Upsilon(3S)$
- Violated in $\Upsilon(4S) \rightarrow \eta h_{b}(1P)$ and $\Upsilon(5S) \rightarrow \pi \pi h_{b}(nP)$

Belle, PRL 115, 142001 (2015)

- Spectroscopy
 - $\Upsilon(1D)$ triplet: only J=2 has been observed
 - Enhanced η transitions could be a pathway to discovery

Kuang, FPC 1, 19 (2006) Voloshin, PPNP 61, 455 (2008)

$\Upsilon(5S) \rightarrow \eta b \overline{b}$: Analysis Overview

- Dataset: 121.4 fb⁻¹ = 36M $\Upsilon(5S)$
- Reconstruct $\eta \rightarrow \gamma \gamma$
 - E_γ > 75 / 50 / 60 MeV (bkd/bar/fwd)
 - $E_9/E_{25} > 0.9$
 - Veto π^0 within m(π^0) ± 17 MeV
 - Photon helicity angle $\cos \theta < 0.94$
- Remove continuum background: $R_2 < 0.3$
- Fit η missing mass spectrum $M_{\rm miss}(\eta) = \sqrt{(P_{e^+e^-} - P_{\eta})^2}$
- Signal peaks: Crystal Ball functions ($\sigma \sim 6-14$ MeV)
- Background: ARGUS + 7th order polynomial

7000

3000

2000

1000

Entries / 1 MeV/c²

2 MeV/c²

Entries

300

200

Υ(5S)→ηbb: Fit Results

- Observe $\Upsilon(5S) \rightarrow \eta \Upsilon(1D)$ $\mathcal{B}[\Upsilon(5S) \rightarrow \eta \Upsilon_J(1D)]$ $= (4.82 \pm 0.92 \pm 0.67) \times 10^{-3}$
- Evidence for $\Upsilon(5S) \to \eta ~\Upsilon(2S)$
- Measure/set limits on σ_{B}
- Attempt to understand $\Upsilon(1D)$ triplet
 - Fit dominated by J=2 assumption
 - Limit scan over mass splitting range

Fraction	Fitted value
f_1	0.23 ± 1.42
f3	-0.31 ± 0.53

Process	$\boldsymbol{\Sigma}$	$N_{\rm meas}[10^3]$	ϵ (%)	σ_B (pb)
$e^+e^- o \eta \Upsilon(1S)$	1.5σ	1.7 ± 1.0	20.1	< 0.49
$e^+e^- \to \eta h_b(1P)$	2.7σ	3.9 ± 1.5	22.2	< 0.76
$e^+e^- \to \eta \Upsilon(2S)$	3.3σ	5.6 ± 1.6	16.5	$1.02 \pm 0.30 \pm 0.17$
$e^+e^- \to \eta \Upsilon(1D)$	5.3σ	9.3 ± 1.8	17.2	$1.64 \pm 0.31 \pm 0.21$
$e^+e^- \to \eta h_b(2P)$	_	-5.2 ± 3.6	16.7	< 0.64

$\Upsilon(5S) \rightarrow \eta b \overline{b}$: Systematic Uncertainties

Source $\sigma_B[\eta \Upsilon(1)]$		$\sigma_B[\eta \Upsilon(2S)]$	$\sigma_B[\eta \Upsilon_J(1D)]$	$\sigma_B[\eta h_b(1P)]$	$\sigma_B[\eta h_b(2P)]$	
Luminosity	1.4	1.4	1.4	1.4	1.4	
Reconstruction efficiency	6.6	6.6	6.6	6.6	6.6	
γ energy calibration	1.5	2.3	2.8	2.1	2.2	
Background fit	4.0	15	7.1	4.6	8.7	
Signal model	3.2	2.5	8.2	2.5	5.5	
Radiative correction	0.6	0.6	0.6	0.6	0.8	
$\mathcal{B}[\eta \to \gamma \gamma]$	0.5	0.5	0.5	0.5	0.5	
Total	8.6	16.8	13.1	8.8	12.5	

- Dominant uncertainty from background shape model
 - Change polynomial order (5-9), fit ranges, bin width
 - Varied background model and attempted sideband fits to ensure robustness of result
- Secondary contribution: γ reconstruction efficiency

$\Upsilon(4S) \rightarrow \eta' \Upsilon(1S)$

PRL 121, 062001 (2018)

Bottomonium Transitions at Belle / QWG 2019 / 2019.05.17 / Bryan FULSOM (PNNL)

Υ (4S)→η' Υ (1S): Analysis Potential

- Motivations
 - Non-B \overline{B} decays of $\Upsilon(4S) < 4\%$
 - $\Upsilon(4S) \rightarrow X+\Upsilon(1S)$ (<0.4%) not saturated by known decay modes
 - Recent experimental results indicate enhanced η rates
 - Search for $\Upsilon(4S) \rightarrow \eta' \Upsilon(1S)$ not yet attempted
- Input from charm sector
 - Null searches for $\psi(4160)/Y(4260) \rightarrow \eta' J/\psi$ by CLEO
 - Observation of e+e- $\rightarrow \eta' J/\psi$ (4.226/4.258 GeV) by BESIII

BESI

- Theory prediction: BR(ψ (4160) $\rightarrow \eta$ 'J/ ψ) ~ 6% x BR(ψ (4160) $\rightarrow \eta$ J/ ψ)
- By analogy: BR($\Upsilon(4S) \rightarrow \eta \Upsilon(1S)$) ~ 2 x 10⁻⁴, BR($\Upsilon(4S) \rightarrow \eta \Upsilon(1S)$) ~ O(10⁻⁵)

Chen et al., PRD 87, 054006 (2013))) ~ $O(10^{-5})$

BESIII, PRD 94, 032009 (2016)

CLEO, PRL 96, 162003 (2006)

BaBar, PRD 78, 112002 (2008) Belle, PRD 96, 052005 (2017)

$\Upsilon(4S) \rightarrow \eta' \Upsilon(1S)$: Analysis Overview

- Reconstruct $\Upsilon(1S) \rightarrow \mu^+ \mu^-$ with two η ' final states
 - $\rho^0\gamma$: higher rate (~30%) but also higher background
 - $\pi^+\pi^-\eta(\gamma\gamma)$: lower rate (~17%) but background-free
 - $\pi^0 \pi^0 \eta$: excluded due to high backgrounds
- Dataset: 496 fb⁻¹ = (538 \pm 8) x 10⁶ Y(4S)

Selection criteria:				
$\eta' o ho^0 \gamma$	$\eta' \to \pi^+ \pi^- \eta$			
"2 charged" skim	"2 charged" skim			
PID on μ^{\pm}	$\mathrm{PID} \ \mathrm{on} \ \mu^{\pm}$			
2 pion and 1 γ candidates	2 pion and 2 γ candidates			
$\mathrm{KB} < 0$	$\mathrm{KB} < 0$			
BDT > 0.15				
$9.3 < M(\mu\mu) < 9.6 \text{ GeV}/c^2$	$9.3 < M(\mu\mu) < 9.6 \text{ GeV}/c^2$			
$ \cos\theta(\pi\pi)_{\rm CM} < 0.9$				

 $\epsilon = (17.64 \pm 0.05)\%$ $\epsilon = (5.02 \pm 0.03)\%$

Kinematic Bound: remove continuum

$$\mathrm{KB} = p(\mu^+ \mu^-)_{CM} +$$

- BDT: remove ISR and extra γ
 - Use $\Delta M_{\pi\pi} = M(\mu\mu\pi\pi) M(\mu\mu)$ and M($\mu\mu\pi\pi\gamma$)

$-\frac{1}{2}\frac{(s-m(\mu^+\mu^-)^2)}{\sqrt{2}}$

Υ (4S) \rightarrow η' Υ (1S): Application of Selection Criteria

- Main fit variable: $\Delta M_{\eta'} = M(\Upsilon(4S)) M(\Upsilon(1S)) M(\eta')$
- Signal fit function: $\mathcal{F}(x) = \exp\left\{-\frac{(x-\mu)^2}{2\sigma_{L,R}^2 + \alpha_{L,R}(x-\mu)^2}\right\}$
- Backgrounds: Gaussian ($\rho^0\gamma$), linear ($\pi^+\pi^-\eta$)

Υ (4S)→η' Υ (1S): Fit Results

Υ (4S) \rightarrow η Υ (1S): Systematic Uncertainties

Source	$\eta' ightarrow ho \gamma$	$\mid \eta' \to \eta \pi^+ \pi^-, \eta \to \gamma$
$\Upsilon(4S)$	±1.4	± 1.4
Tracking	± 1.4	± 1.4
μ -id	± 1.1	± 1.1
BRs from PDG	± 2.7	± 2.6
$\eta' ightarrow ho \gamma ext{ model}$	-1.9	-
Fit procedure	± 6.8	± 2.0
Total on \mathcal{B}	± 7.6	± 3.5

- Largest sources
 - Modeling of lineshapes
 - Secondary branching fractions (beyond scope of this analysis)
- Dominated by statistical uncertainty (~30-40%)

Υ (4S) \rightarrow η Υ (1S): Summary of Results

• Derivation of branching fractions and ratio with other hadronic decays

$$\mathcal{B} = \frac{N_{\text{sig}}}{\epsilon \times N_{\Upsilon(4S)} \times \mathcal{B}_{\text{secondary}}} \qquad R_{\eta'/h} = \frac{\mathcal{B}(\Upsilon(4S) \to \mathcal{B})}{\mathcal{B}(\Upsilon(4S) \to \mathcal{B})}$$

- Branching fraction results
 - $\pi^+\pi^-\eta =$ (3.19±0.96±0.24) x 10⁻⁵
 - $\rho^0 \gamma =$ (4.53±2.12±0.16) x 10⁻⁵
 - Combined = $(3.43 \pm 0.88 \pm 0.21) \times 10^{-5}$

Combined significance = 5.7σ First observation of this decay!

- Ratio of branching fractions
 - $R_{n'/n} = 0.20 \pm 0.06$
 - $R_{n'/\pi\pi} = 0.42 \pm 0.11$
 - Indicative of light quark contributions?

Voloshin, MPLA 26, 773 (2011)

$\eta' \Upsilon(1S))$ $h\Upsilon(1S))$

$\Upsilon(2S) \rightarrow \gamma \eta_b(1S)$

PRL 121, 232001 (2018)

Bottomonium Transitions at Belle / QWG 2019 / 2019.05.17 / Bryan FULSOM (PNNL)

Υ (2S) $\rightarrow \gamma \eta_b$ (1S): Analysis potential

- $\eta_b(1S)$ mass
 - Past measurements inconsistent
 - Many theoretical predictions

See e.g.: Burns, PRD 87, 034022 (2013)

- Decay rate predictions vary
 - BR($\Upsilon(2S) \rightarrow \gamma \eta_b(1S)$) = (2 20) x 10⁻⁴
- BaBar analysis had ~92M Y(2S)
 - Statistical significance 3.7σ
 - $B(\Upsilon(2S) \rightarrow \gamma \eta_b(1S)) = (3.9 \pm 1.5) \times 10^{-4}$
- Belle has ~158M Y(2S) (24.7 fb⁻¹)
 - Should reach $>5\sigma$ significance

$\Upsilon(2S) \rightarrow \gamma \eta_{b}(1S)$: Analysis Overview

- Fit to inclusive photon spectrum
 - $\Upsilon(2S) \rightarrow \gamma \eta_{b}(1S)$: ~610 MeV
 - $e^+e^-\gamma_{ISR} \rightarrow \Upsilon(1S)$: ~547 MeV
 - $\chi_{b,l}(1P) \rightarrow \gamma \Upsilon(1S) : 391,424,442 \text{ MeV}$
 - Huge smooth inclusive background
- Optimized selection criteria
 - Photons in calorimeter barrel
 - e9oe25 > 0.925
 - Reject $|m_{\gamma\gamma}-m_{\pi0}| < 15 \text{ MeV}$
 - |cosθ_T| < 0.9
- Efficiency: ε ~ 26 32 %
- Lineshapes:
 - Crystal Ball variants (signal)
 - exp(poly) (background)
- Resolution: $\sigma \sim 8 12 \text{ MeV}$

Υ (2S)→ γ η_b(1S): Fit results

Υ (2S) $\rightarrow \gamma \eta_b$ (1S): Fit results in signal region

(%)	E_{γ}^{*} (MeV)
$0.02\substack{+0.11 \\ -0.15}$	$423.1 \pm 0.1 \pm 0.5$
$0.01\substack{+0.06 \\ -0.07}$	$442.1\pm0.2^{+0.5}_{-0.6}$
	$547.2^{+0.6+1.3}_{-2.3-3.2}$
$(-0.9)_{-0.6} \times 10^{-2}$	$606.1^{+2.3+3.6}_{-2.4-3.4}$

$\Upsilon(2S) \rightarrow \gamma \eta_{b}(1S)$: Systematic Uncertainties

	E_{γ}^{*} (MeV)				Branching fraction (%)			
Effect	$\chi_{b1}(1P)$	$\chi_{b2}(1P)$	ISR	$\eta_b(1S)$	$\chi_{b1}(1P)$	$\chi_{b2}(1P)$	ISR	$\eta_b($
E^*_{γ} calibration	± 0.5	± 0.5	$^{+1.2}_{-2.2}$	±2.5	+0.1 -0.0	$^{+0.1}_{-0.0}$	$^{+1.9}_{-0.0}$	+
$\Gamma_{\eta_b(1S)}$	± 0.0	± 0.0	$+0.2 \\ -0.0$	±0.3	$+0.2 \\ -0.1$	+0.0 -0.2	$^{+1.1}_{-0.0}$	+
Signal shape	± 0.0	± 0.0	+0.3 -0.4	+2.6 -1.0	$^{+0.0}_{-0.1}$	$^{+0.0}_{-0.1}$	$^{+1.2}_{-0.2}$	+1
Background shape	$^{+0.1}_{-0.0}$	$^{+0.2}_{-0.0}$	+0.1 -2.0	$^{+0.0}_{-2.1}$	+0.7 -0.1	$^{+0.1}_{-0.2}$	$^{+18.6}_{-1.7}$	+
Bin/range	+0.0 -0.2	$^{+0.0}_{-0.4}$	+0.4 -0.5	$^{+0.0}_{-0.5}$	$^{+0.0}_{-1.3}$	$^{+2.7}_{-0.0}$	$^{+1.6}_{-0.0}$	+
$N[\Upsilon(2S)]$					± 2.3	± 2.3	± 2.3	± 1
γ efficiency					± 2.8	± 2.8	± 2.8	± 2
Selection criteria					+2.4	+2.4	+2.4	+
Total	± 0.5	+0.5 -0.6	$^{+1.3}_{-3.2}$	+3.6 -3.4	+4.0 +4.4 -6.1	+5.1 -6.0	+18.7 -5.7	+1 -9

- Energy calibration: maximum uncertainty from two methods and ISR
 - E_{γ}^* extrapolation from $\Upsilon(2S) \rightarrow \gamma \chi_{b0,1,2}(1P)$ and $\chi_{b1,2}(1P) \rightarrow \gamma \Upsilon(1S)$
 - E_{γ} control modes: $D^{*0} \rightarrow D^{0}(K^{\pm}\pi^{\mp})\gamma, \eta \rightarrow \gamma\gamma, \chi_{b1,2}(1P) \rightarrow \gamma\Upsilon(1S)(\mu^{+}\mu^{-})$
- Lineshape:
 - Signal lineshape from theoretical M1 transition predictions
 - Description of background composition

$\Upsilon(2S) \rightarrow \gamma \eta_{b}(1S)$: Summary of Results

- Branching Fractions / Yields
 - χ_b match CLEO/BaBar measurements
 - ISR consistent with theory

 $\mathcal{B}(\Upsilon(2S) \to \gamma \eta_b(1S)) = (6.1^{+0.6+0.9}_{-0.7-0.5}) \times 10^{-4}$

• $\eta_{\rm b}$ branching fraction corresponds with lattice

BaBar, PRD 84, 072002 (2011), PRD 90, 112010 (2014)

Benayoun et al., MPLA 14, 2605 (1999)

• All mass results (χ_b , ISR, η_b) consistent with PDG (9399.0±2.3 MeV)

$$m_{\eta_b(1S)} = 9394.8^{+2.7+4.5}_{-3.1-2.7} \text{ MeV}/c^2$$

- Consistent with $h_{\rm b}$ (1.2 σ) and Υ (0.7 σ) results
- Width not inconsistent with existing measurements

CLEO, PRD 83, 054003 (2011)

Hughes et al., PRD 92, 094501 (2015)

CONCLUSIONS

Bottomonium Transitions at Belle / QWG 2019 / 2019.05.17 / Bryan FULSOM (PNNL)

- Belle continues to make important contributions to the study of the bottomonium system
- Hadronic transitions
 - First observation of $\Upsilon(5S) \rightarrow \eta \Upsilon(1D)$
 - First observation of $\Upsilon(4S) \rightarrow \eta' \Upsilon(1S)$
- Radiative transitions
 - First observation of $\Upsilon(2S) \rightarrow \gamma \eta_{\rm b}(1S)$

• Future results expected from both Belle and high-statistics Belle II experiment

EPJC 78, 633 (2018)

PRL 121, 062001 (2018)

PRL 121, 232001 (2018)

Thank you

