QWG 2019 - The 13th International Workshop on Heavy Quarkonium Quarkonium radiative decays from the Hadronic Paschen-Back effect

R-wave

C

S. Iwasaki and K. Suzuki, Phys.Rev.D98, 054017 (2018) S. Iwasaki, M. Oka, K. Suzuki, and T. Yoshida, Phys.Lett.B790, 71 (2019)

What's Paschen-Back effect?

= Strong B-field limit of Zeeman effect

 $|J;LS\rangle \rightarrow |L_zS_z\rangle$

No B-field: (L_z and S_z are not good by LS coupling)

Paschen-Back limit (*J*, *L*, *S* are not good by B-field)

Condition: Larger B-field than LS splitting

 $\sqrt{eB} \gg V_{IS}$

Strong B-field by HIC

Non-central collision

Strong B-field by HIC

 Non-central collision produces strong magnetic field

 $eB_{\rm RHIC}^{\rm th} \sim 5m_{\pi}^2 \sim 0.1 {\rm GeV}^2$ $eB_{\rm LHC}^{\rm th} \sim 15m_{\pi}^2 \sim 0.3 {\rm GeV}^2$

One of the motivations: How to measure B-field by HIC?

Quarkonia as a thermometer

arXiv:0811.0337

Quarkonia as a gaussmeter!

Other motivations: Compact stars, lattice simulations...

Cf.) J. Alford and M. Strickland, PRD88 (2013) Nonrelativistic two-body Hamiltonian in B-field Linear + Coulomb +

 $A = \frac{1}{2}B \times r_i$

 $H = \sum_{i=1}^{I} \frac{1}{2m_i} (\boldsymbol{p}_i - q_i \boldsymbol{A})^2 - \boldsymbol{\mu}_i \cdot \boldsymbol{B} + m_i + V(r)$

discretized

(1) Modification of kinetic energy perpendicular to B moving B \Rightarrow Quark Landau levels n=2 n=1 n=0

i = 1.2

(2) Alignment of magnetic moment

Spin-spin + LS + Tensor

6

Strictly speaking...

$\widehat{H} = \boldsymbol{\mu} \cdot \boldsymbol{B} = (\boldsymbol{\mu}_q + \boldsymbol{\mu}_{\overline{q}}) \cdot \boldsymbol{B}$, where $\boldsymbol{\mu}_i = \frac{gq}{2m_i} \boldsymbol{S}_i$

 $\widehat{H}|\uparrow\uparrow\rangle = -\frac{gqB}{4m_1}|\uparrow\uparrow\rangle + \frac{gqB}{4m_2}|\uparrow\uparrow\rangle$ $\widehat{H}|\downarrow\downarrow\rangle = \frac{gqB}{4m_1}|\downarrow\downarrow\rangle - \frac{gqB}{4m_2}|\downarrow\downarrow\rangle$ \Rightarrow If $m_1 \neq m_2$, diagonal component is finite = Hadron Zeeman splitting \Rightarrow If $m_1 = m_2$, diagonal component is zero = No Zeeman splitting $\hat{H} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$ $= -\frac{gqB}{4m_1}|\uparrow\downarrow\rangle - \frac{gqB}{4m_1}|\downarrow\uparrow\rangle - \frac{gqB}{4m_2}|\uparrow\downarrow\rangle - \frac{gqB}{4m_2}|\downarrow\uparrow\rangle$ $= -\left(\frac{gqB}{4m_1} + \frac{gqB}{4m_2}\right)\left(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle\right)$ ⇒Diagonal component is zero ⇒Finite off-diagonal component = Spin mixing

One of observables: Mass shift by spin mixing

Spin mixing for P-waves

Spherical eigenstates in B=0

	$h_c(J=1)$	$\chi_{c0}(J=0)$	$\chi_{c1}(J=1)$	$\chi_{c2}(J=2)$
$J_z = \pm 2$	X	\mathbf{X} Mixing btw s_z	X = 0	$L_z = \pm 1$ $s_z = \pm 1$
$J_z = \pm 1$	$L_z = \pm 1$ $S_z = 0$	X	$L_{z} = \pm 1$ $S_{z} = 0$ $L_{z} = 0$ $V_{LS} = \pm 1$	$L_{z} = \pm 1$ $S_{z} = 0$ $L_{z} = 0$ $L_{z} = 0$ $S_{z} = \pm 1$
$J_z = 0$	$L_{z} = 0$ $S_{z} = 0$	$L_{z} = \pm 1$ $s_{z} = \pm 1$ $L_{z} = 0$ $V_{LS} = 0$	$L_{z} = \pm 1$ $s_{z} = \pm 1$ $L_{z} = 0$ $s_{z} = 0$	$L_{z} = \pm 1$ $S_{z} = \pm 1$ $L_{z} = 0$ $S_{z} = 0$

 J_z -polarized eigenstates

Let's remember **Paschen-Back effect**

Condition: Larger B-field than LS splitting

- LS mixing is (approximately) broken
- and, Spin mixing becomes dominant !

P-wave eigenstates in PB limit

Conclusion: Wave functions in PB limit

Or

Notice:

J_z -polarization is NOT the PB limit

	$h_c(J=1)$	$\chi_{c0}(J=0)$	$\chi_{c1}(J=1)$	$\chi_{c2}(J=2)$
$J_z = \pm 2$	×	×	×	
$J_z = \pm 1$		×	No L _z eigenstates	No L _z eigenstates
$J_z = 0$		No L _z eigenstates	No L _z eigenstates	No L _z eigenstates

Let's numerically check it! (from quark model)

S. Iwasaki, M. Oka, K. Suzuki, and T. Yoshida, Phys.Lett.B790, 71 (2019)

Mass and WF ($J_z = \pm 2$)

- No spin-mixing for $J_z = \pm 2$
 - $\Rightarrow \rho$ -squeezing of wave function (=charm quark Landau levels, <u>not PB effect</u>)
 - ⇒ Increase of charmonium mass

С

Mass and WF ($J_z = \pm 1$)

С

С

<u>Mixing ratios</u> for $J_z = \pm 1$

Saturation of mixing ratios (=<u>Paschen-Back region</u>)

• It can be realized even for $eB = 0.01 - 0.1 \text{ GeV}^2$ due to $\sqrt{eB} \gg V_{LS}$

С

Mass and WF ($J_z = 0$)

С

<u>C</u>

<u>Mixing ratios</u> for $J_z = 0$

Saturation of mixing ratios (=<u>Paschen-Back region</u>)

• Note: tensor mixing survives $(L_z = +1 \Leftrightarrow L_z = -1)$

Radiative decays from pNRQCD

[E1] N. Brambilla, Y. Jia, and A. Vairo, PRD73, 054005 (2006)
[M1] N. Brambilla, P. Pietrulewicz, and A. Vairo, PRD85, 094005 (2012)
[E1] A. Pineda and J. Segovia, PRD87, 074024 (2013)
[M1] J. Segovia, S. Steinbeißer, and A. Vairo, PRD99, 074011 (2019)

P-wave WF

$$\phi_{n^1P_1(\lambda)}^{(0)}(\mathbf{r}) = \sqrt{\frac{3}{8\pi}} R_{n1}(r) \mathbf{e}_{n^1P_1}(\lambda) \cdot \hat{\mathbf{r}}$$

$$\phi_{n^{3}P_{0}}^{(0)}(\mathbf{r}) = \sqrt{\frac{1}{8\pi}}R_{n1}(r)\boldsymbol{\sigma}\cdot\hat{\mathbf{r}},$$

$$\phi_{n^{3}P_{1}(\lambda)}^{(0)}(\mathbf{r}) = \sqrt{\frac{3}{16\pi}} R_{n1}(r) \boldsymbol{\sigma} \cdot (\hat{\mathbf{r}} \times \mathbf{e}_{n^{3}P_{1}}(\lambda)),$$

$$\phi_{n^{3}P_{2}(\lambda)}^{(0)}(\mathbf{r}) = \sqrt{\frac{3}{8\pi}} R_{n1}(r) \boldsymbol{\sigma}^{i} h_{n^{3}P_{2}}^{ij} \hat{\mathbf{r}}^{j},$$

S-wave WF

$$\phi_{n^{1}S_{0}}^{(0)}(\mathbf{r}) = \sqrt{\frac{1}{8\pi}}R_{n0}(r),$$

$$\phi_{n^{3}S_{1}}^{(0)}(\mathbf{r}) = \sqrt{\frac{1}{8\pi}}R_{n0}(r)\boldsymbol{\sigma} \cdot \mathbf{e}_{n^{3}S_{1}}(\lambda),$$

S. Iwasaki and KS, PRD98, 054017 (2018)

Radiative decays in the PB limit

• Wave functions are "polarized" only by $L_z S_z$

$$J_{Z} = \pm 2$$

$$\phi_{L_{z}=\pm1;(S,S_{z})=(1,\pm1)}^{(0)}(\mathbf{r}) = \sqrt{\frac{3}{8\pi}}R_{n1}(r)\hat{r}^{\pm}\sigma^{\pm}.$$

$$J_{Z} = \pm 1$$

$$\phi_{L_{z}=\pm1;(S,S_{z})=(0,0)}^{(0)}(\mathbf{r}) = \sqrt{\frac{3}{8\pi}}R_{n1}(r)\hat{r}^{\pm},$$

$$\phi_{L_{z}=\pm1;(S,S_{z})=(1,0)}^{(0)}(\mathbf{r}) = \sqrt{\frac{3}{8\pi}}R_{n1}(r)\hat{r}^{\pm}\sigma^{z},$$

$$\phi_{L_{z}=0;(S,S_{z})=(1,-1)}^{(0)}(\mathbf{r}) = \sqrt{\frac{3}{8\pi}}R_{n1}(r)\hat{r}^{\pm}\sigma^{z},$$

$$\phi_{L_{z}=0;(S,S_{z})=(1,-1)}^{(0)}(\mathbf{r}) = \sqrt{\frac{3}{8\pi}}R_{n1}(r)\hat{r}^{-}\sigma^{z},$$

$$\phi_{L_{z}=0;(S,S_{z})=(1,-1)}^{(0)}(\mathbf{r}) = \sqrt{\frac{3}{8\pi}}R_{n1}(r)\hat{r}^{-}\sigma^{z},$$

$$\phi_{L_{z}=0;(S,S_{z})=(1,-1)}^{(0)}(\mathbf{r}) = \sqrt{\frac{3}{8\pi}}R_{n1}(r)\hat{r}^{-}\sigma^{z},$$

Anisotropic radiative decays in the PB limit

• *L_z* -Polarized wave functions leads to...

$$\left\langle \begin{array}{c} \mathbf{z} \neq \mathbf{f} \\ \mathbf{z} \neq \mathbf{f} \\ \end{array} \right| \overrightarrow{r} \cdot \overrightarrow{\epsilon}^{\pm} \left| \begin{array}{c} \mathbf{c} \\ \mathbf{c}$$

$|\vec{r} \cdot \vec{\epsilon}^{\pm}|_{\text{S-wave}} \propto \sin \alpha$

⇒Decays <u>perpendicular to B-field</u> are enhanced

ΔJ_z	E Decay process	Decay factor	$\alpha = 0, \pi$	$\alpha = \pi/2$
$0 \rightarrow 0$	$\frac{1}{\sqrt{2}} [Y_{10}\chi_{00} \pm Y_{10}\chi_{10}] \rightarrow \frac{1}{\sqrt{2}} [Y_{00}\chi_{00} \pm Y_{00}\chi_{10}]$	$\frac{3}{4}\sin^2\alpha$	0	$\frac{3}{4}$
$0 \rightarrow -1$	$\frac{1}{\sqrt{2}}[Y_{11}\chi_{1-1} \pm Y_{1-1}\chi_{11}] \to Y_{00}\chi_{1-1}$	$\frac{3}{32}(\cos^2 \alpha + 1)$	$\frac{3}{16}$	$\frac{3}{32}$
$0 \rightarrow +1$	$\frac{1}{\sqrt{2}} [Y_{11}\chi_{1-1} \pm Y_{1-1}\chi_{11}] \to Y_{00}\chi_{11}$	$\frac{3}{32}(\cos^2\alpha+1)$	$\frac{3}{16}$	$\frac{3}{32}$
$+1 \rightarrow 0$	$\frac{1}{\sqrt{2}} [Y_{11}\chi_{00} \pm Y_{11}\chi_{10}] \rightarrow \frac{1}{\sqrt{2}} [Y_{00}\chi_{00} \pm Y_{00}\chi_{10}]$	$\frac{3}{32}(\cos^2\alpha+1)$	$\frac{3}{16}$	$\frac{3}{32}$
$\pm 1 \rightarrow \pm 1$	$Y_{10}\chi_{1\pm 1} \to Y_{00}\chi_{1\pm 1}$	$\frac{3}{2}\sin^2\alpha$	0	$\frac{3}{2}$
$-1 \rightarrow 0$	$\frac{1}{\sqrt{2}} [Y_{1-1}\chi_{00} \pm Y_{1-1}\chi_{10}] \rightarrow \frac{1}{\sqrt{2}} [Y_{00}\chi_{00} \pm Y_{00}\chi_{10}]$	$\frac{3}{32}(\cos^2 \alpha + 1)$	$\frac{3}{16}$	$\frac{3}{32}$
$+2 \rightarrow +1$	$Y_{11}\chi_{11} \to Y_{00}\chi_{11}$	$\frac{3}{16}(\cos^2 \alpha + 1)$	<u>3</u> 8	$\frac{3}{16}$
$-2 \rightarrow -1$	$Y_{1-1}\chi_{1-1} \to Y_{00}\chi_{1-1}$	$\frac{3}{16}(\cos^2\alpha + 1)$	<u>3</u> 8	$\frac{3}{16}$
ΔJ_z	Decay process	Decay factor	$\alpha = 0, \pi$	$\alpha = \pi/2$
$0 \rightarrow +1$	$\frac{1}{\sqrt{2}} [Y_{10}\chi_{00} \pm Y_{10}\chi_{10}] \to Y_{10}\chi_{11}$	$\frac{1}{2}(\cos^2\alpha+1)$	1	$\frac{1}{2}$
$0 \rightarrow 0$	$\frac{1}{\sqrt{2}} [Y_{10}\chi_{00} + Y_{10}\chi_{10}] \rightarrow \frac{1}{\sqrt{2}} [Y_{10}\chi_{00} - Y_{10}\chi_{10}]$	$\sin^2 \alpha$	0	1
$0 \rightarrow 0$	$\frac{1}{\sqrt{2}} [Y_{10}\chi_{00} - Y_{10}\chi_{10}] \rightarrow \frac{1}{\sqrt{2}} [Y_{10}\chi_{00} + Y_{10}\chi_{10}]$	$\sin^2 \alpha$	0	1
$0 \rightarrow -1$	$\frac{1}{\sqrt{2}} [Y_{10}\chi_{00} \pm Y_{10}\chi_{10}] \to Y_{10}\chi_{1-1}$	$\frac{1}{2}(\cos^2\alpha+1)$	1	$\frac{1}{2}$
$0 \rightarrow +1$	$\frac{1}{\sqrt{2}} [Y_{11}\chi_{1-1} \pm Y_{1-1}\chi_{11}] \rightarrow \frac{1}{\sqrt{2}} [Y_{11}\chi_{00} \pm Y_{11}\chi_{10}]$	$\frac{1}{4}(\cos^2\alpha+1)$	$\frac{1}{2}$	$\frac{1}{4}$
$0 \rightarrow -1$	$\frac{1}{\sqrt{2}} [Y_{11}\chi_{1-1} \pm Y_{1-1}\chi_{11}] \to \frac{1}{\sqrt{2}} [Y_{1-1}\chi_{00} \pm Y_{1-1}\chi_{10}]$	$\frac{1}{4}(\cos^2\alpha+1)$	$\frac{1}{2}$	$\frac{1}{4}$
$+1 \rightarrow +2$	$\frac{1}{\sqrt{2}}[Y_{11}\chi_{00} \pm Y_{11}\chi_{10}] \rightarrow Y_{11}\chi_{11}$	$\frac{1}{2}(\cos^2\alpha + 1)$	1	$\frac{1}{2}$
$+1 \rightarrow 0$	$\frac{1}{\sqrt{2}} [Y_{11}\chi_{00} \pm Y_{11}\chi_{10}] \rightarrow \frac{1}{\sqrt{2}} [Y_{11}\chi_{1-1} \pm Y_{1-1}\chi_{11}]$	$\frac{1}{4}(\cos^2\alpha+1)$	$\frac{1}{2}$	$\frac{1}{4}$
$\pm 1 \rightarrow \pm 1$	$\frac{1}{\sqrt{2}} \left[Y_{1\pm 1} \chi_{00} + Y_{1\pm 1} \chi_{10} \right] \rightarrow \frac{1}{\sqrt{2}} \left[Y_{1\pm 1} \chi_{00} - Y_{1\pm 1} \chi_{10} \right]$	$\sin^2 \alpha$	0	1
$\pm 1 \rightarrow \pm 1$	$\frac{1}{\sqrt{2}} [Y_{1\pm 1}\chi_{00} - Y_{1\pm 1}\chi_{10}] \rightarrow \frac{1}{\sqrt{2}} [Y_{1\pm 1}\chi_{00} + Y_{1\pm 1}\chi_{10}]$	$\sin^2 \alpha$	0	1
$-1 \rightarrow 0$	$\frac{1}{\sqrt{2}} [Y_{1-1}\chi_{00} \pm Y_{1-1}\chi_{10}] \rightarrow \frac{1}{\sqrt{2}} [Y_{11}\chi_{1-1} \pm Y_{1-1}\chi_{11}]$	$\frac{1}{4}(\cos^2\alpha+1)$	$\frac{1}{2}$	$\frac{1}{4}$
$-1 \rightarrow -2$	$\frac{1}{\sqrt{2}} [Y_{1-1}\chi_{00} \pm Y_{1-1}\chi_{10}] \to Y_{1-1}\chi_{1-1}$	$\frac{1}{2}(\cos^2\alpha + 1)$	1	$\frac{1}{2}$
$+1 \rightarrow 0$	$Y_{10\chi_{11}} \rightarrow \frac{1}{\sqrt{2}} [Y_{10\chi_{00}} \pm Y_{10\chi_{10}}]$	$\frac{1}{2}(\cos^2\alpha + 1)$	1	$\frac{1}{2}$
$-1 \rightarrow 0$	$Y_{10}\chi_{1-1} \rightarrow \frac{1}{\sqrt{2}} [Y_{10}\chi_{00} \pm Y_{10}\chi_{10}]$	$\frac{1}{2}(\cos^2\alpha+1)$	1	$\frac{1}{2}$
$+2 \rightarrow +1$	$Y_{11}\chi_{11} \to \frac{1}{\sqrt{2}} [Y_{11}\chi_{00} \pm Y_{11}\chi_{10}]$	$\frac{1}{2}(\cos^2\alpha + 1)$	1	$\frac{1}{2}$
$-2 \rightarrow -1$	$Y_{1-1\chi_{1-1}} \rightarrow \frac{1}{\sqrt{2}} [Y_{1-1\chi_{00}} \pm Y_{1-1\chi_{10}}]$	$\frac{1}{2}(\cos^2\alpha+1)$	1	$\frac{1}{2}$

Summary and Outlook

Today's message:

Paschen-Back limit is a new frontier of quarkonium physics

- This limit is realized in <u>relatively weak</u> magnetic fields (even for $eB = 0.01 0.1 \text{ GeV}^2$)
- Deformed ("polarized") wave functions
- <u>Anisotropic decays</u>
- Color-octet states in pNRQCD
- Other hadrons with $L \neq 0$ (D mesons, baryons, light hadrons...)
- Other anisotropic processes (strong decays, production...)
- Beyond the PB limit (EFT or QFT with B-field)
- Application to Heavy-ion collisions, Compact stars, Lattice QCD...

Backup

States	J_z	Bases $(Y_{LL_z} \chi_{SS_z})$
$h_c ({}^1P_1)$	0	Y ₁₀ χ ₀₀
	±1	$Y_{1\pm 1}\chi_{00}$
$\chi_{c0} ({}^{3}P_{0})$	0	$\frac{1}{\sqrt{3}}[Y_{11}\chi_{1-1} - Y_{10}\chi_{10} + Y_{1-1}\chi_{11}]$
$\chi_{c1} ({}^{3}P_{1})$	0	$\frac{1}{\sqrt{2}}[Y_{1-1}\chi_{11} - Y_{11}\chi_{1-1}]$
	± 1	$\pm \frac{1}{\sqrt{2}} [Y_{10} \chi_{1\pm 1} - Y_{1\pm 1} \chi_{10}]$
$\chi_{c2} ({}^{3}P_{2})$	0	$\frac{1}{\sqrt{6}} [Y_{11}\chi_{1-1} + 2Y_{10}\chi_{10} + Y_{1-1}\chi_{11}]$
	±1	$\frac{1}{\sqrt{2}}[Y_{1\pm 1}\chi_{10} + Y_{10}\chi_{1\pm 1}]$
	± 2	$Y_{1\pm 1}\chi_{1\pm 1}$

Jz	Bases $(Y_{LL_z} \chi_{SS_z})$
0	$\frac{1}{\sqrt{2}}[Y_{10}\chi_{00}+Y_{10}\chi_{10}]$
0	$\frac{1}{\sqrt{2}}[Y_{11}\chi_{1-1} + Y_{1-1}\chi_{11}]$
0	$\frac{1}{\sqrt{2}}[Y_{11}\chi_{1-1} - Y_{1-1}\chi_{11}]$
0	$\frac{1}{\sqrt{2}}[Y_{10}\chi_{00} - Y_{10}\chi_{10}]$
± 1	$\frac{1}{\sqrt{2}}[Y_{1\pm 1}\chi_{00} + Y_{1\pm 1}\chi_{10}]$
±1	$Y_{10}\chi_{1\pm 1}$
±1	$\frac{1}{\sqrt{2}}[Y_{1\pm 1}\chi_{00} - Y_{1\pm 1}\chi_{10}]$
±2	$Y_{1\pm 1}\chi_{1\pm 1}$

K. Hattori and A. Yamamoto, PTEP2019, 043

WF deformation from Lattice QCD

eB = 0

 $eB = 0.27 \text{ GeV}^2$

x

28

S-wave charmonia

Approaches for quarkonia in B-field

(2) Potential models

$$H = \sum_{i=1,2} \frac{1}{2m_i} (\boldsymbol{p}_i - q_i \boldsymbol{A})^2 - \boldsymbol{\mu}_i \cdot \boldsymbol{B} + m_i + V(r)$$

 \Rightarrow Constituent quark LL and magnetic moment effect

> Alford-Strickland, PRD88(2013). Bonati-D'Elia-Rucci, PRD92(2015). KS-Yoshida, PRD93(2016); PRD94(2016).

There are no results! (for heavy hadrons)

KS and T. Yoshida, PRD93, 051502 (2016)

$J/\psi (J_z = \pm 1)$ (no mixing)

 \overline{C}

С

 \overline{c}

С

KS and T. Yoshida, PRD93, 051502 (2016)

Excited state (2S) deformation

KS and T. Yoshida, PRD93, 051502 (2016)

η_c and J/ ψ ($J_z = 0$)

 \overline{C}

С

 \overline{c}

Summary of mass shift

Excited states $(\psi' - \eta'_c)$ are more sensitive than ground states

17/May/2019

QWG 2019

Excited states

Excited states

c c

 $\sqrt{\langle r^2 \rangle} \sim 0.77 \text{fm}$

$\eta_c(1S)$

$\eta_c(2S)$

 $C \overline{C}$

17/May/2019

QWG 2019

S. Cho, K. Hattori, S. H. Lee, K. Morita, and S. Ozaki, PRL113, 172301 (2014)

Spin mixing from hadron EFT

 Pseudoscalar (spin 0) and Vector (spin 1) are mixed by *P*-*V*-γ vertex

 $\mathcal{L}_{EFT} = g \tilde{F}_{\mu\nu} \left(\partial^{\mu} P \right) V^{\nu}$

\Rightarrow Coupling constant *g* is determined by $J/\psi \rightarrow \eta_c \gamma$ decay

17/May/2019

T. Yoshida and KS, PRD94, 074043 (2016)

Excited states mixing from hadron EFT

• Coupling constant is $g \propto g_{\gamma PV}/(m_P + m_V)$

 J/ψ - η_c mixing and ψ' - η'_c mixing are essential Excited states mixing is more sensitive

17/May/2019

QWG 2019

T. Yoshida and KS, PRD94, 074043 (2016) Results from hadron EFT and potential model

- Hadron EFT

Potential model

In weak B-field, two methods obtained consistent results In strong B-field, EFT shows underestimation \Rightarrow Quark d.o.f?

Bottomonia

Charmonium vs Bottomonium

⇒Bottomonium is insensitive to B-field than charmonium

QWG 2019

T. Yoshida and KS, PRD94, 074043 (2016)

$\Upsilon (J_z = \pm 1)$ in B-field

QWG 2019

T. Yoshida and KS, PRD94, 074043 (2016)

η_b and $\Upsilon(J_z = 0)$ in B-field

QWG 2019

D mesons

D meson properties in B-field

What's happen D mesons in a magnetic field?

1. Spin mixing 2. Zeeman splitting

- 3. Quark Landau levels
- 4. Wave function deformation
- 5. Magnetic catalysis (B-dependence of $\langle \overline{q}q \rangle$)

17/May/2019

QWG 2019

C.S. Machado et al. PRD88 (2013), J. Alford and M. Strickland, PRD88 (2013), S. Cho et al. PRL113 (2014) Mass shift by spin mixing

Mass shift by Zeeman splitting

T. Yoshida and KS, PRD94, 074043 (2016)

D meson mass in B-field w/o MC

QWG 2019