η_c Decays at BESIII

Zhentian Sun Institute of High Energy Physics, Beijing On behalf of BESIII collaboration

QWG2019, Torino, Italy, May 13-17

Outline

- Introduction
- $Br(\eta_c \to VV)$ $\gg \eta_c \to \phi \phi, \omega \phi$ $\gg \eta_c \to \omega \omega$
- Search for $\psi(3686) \rightarrow \gamma \eta_c \rightarrow \gamma \pi^+ \pi^- \pi^0$
- $e^+e^-
 ightarrow \pi^+\pi^-h_c$, $h_c
 ightarrow \gamma\eta_c$, $\eta_c
 ightarrow hadrons$ with XYZ data
- Summary

Introduction

- M1 radiative transition
- Hadronic transition
- 2-body electromagnetic decay

 \square η_c is the lowest lying charmonium state

 $oxdot \eta_c$ can't be generated directly from e^+e^- , annihilation

 \square η_c can be generated from the radiative transition of J/ ψ , ψ' or h_c

BESIII data samples:

- □ J/ψ: 0.225Billion(2009), 1.09B(2012), 8.5B(2018)
- $\psi(3686)$: 106M(2009), 341M(2012) \Box XYZ: 12fb⁻¹ (Ecms> 3.8 GeV)

Introduction

 $\square \eta_c$ mainly decay through the 2 gluons.

 $\Box \eta_c \rightarrow VV$ is suppressed(forbidden) by pQCD at the leading-twist order because it violate the Helicity Selection Rule(HSR)

BR
$$_{J_{c\bar{c}}(\lambda) \to h_1(\lambda_1)h_2(\lambda_2)} \sim \left(\frac{\Lambda_{\text{QCD}}^2}{m_c^2}\right)^{|\lambda_1 + \lambda_2| + 2}$$
, PRD 81, 014017 (2010)

Or $\sigma_c \neq \sigma_1 \sigma_2$, where $\sigma = P(-1)^J$ is the naturalness of the particle

□ When higher order correction is taken into consideration in pQCD, the decay branching fraction can become significant $Br(\eta_c \rightarrow VV) \approx 10^{-4}$ PLB 702 (2011) 49–54

Introduction

□ The experimental result for $Br(\eta_c \rightarrow VV) \approx 10^{-2}$, 10^{-3} which is 1 or 2 orders larger than pQCD predication.

□ Some non-perturbative mechanism is proposed to explain this, such as > The intermediate meson loop(IML) PLB 711 (2012) 364–370 > The charmonium light fork component admixture model (η_c , η , η') PLB 702 (2011) 49–54 > The ³P₀ quark creation mechanism ($\eta_c \rightarrow (\eta, \eta') \rightarrow VV$) PRD71, 114002 (2005)

They can give predicated $Br(\eta_c \rightarrow VV)$ closer to experimental result.

Branching fractions for $\eta_c ightarrow \phi \phi, \omega \phi$

PRD95, 092004 (2017)

- Based on $(223.7 \pm 1.4) \times 10^6 \text{ J/}\psi$ events.
- $J/\psi \rightarrow \gamma \eta_c$, $~\eta_c \rightarrow \varphi \varphi$, $\omega \varphi$ signal are selected

• Clear $\phi\phi$ and $\omega\phi$ clusters can be seen

PWA for $J/\psi o \gamma \eta_c$, $\eta_c o \phi \phi$

PWA with helicity-covariant formalism is performed.

$$f(s) = \frac{1}{M^2 - s - iM\Gamma} \frac{\mathcal{F}(E_{\gamma})}{\mathcal{F}(E_{\gamma}^0)},$$

$$\mathcal{F}(E_{\gamma}) = \exp(-\frac{E_{\gamma}^2}{16\beta^2}) \text{ with } \beta = 0.065 \text{ GeV}$$

And the mass and width are fixed to previous BESIII measurement, M=2.984GeV, Γ =0.032GeV

The interference is considered, however PWA also bring larger uncertainty.

□ The result is much larger than pQCD, and agree better with several non-perturbative model.

Branching fractions for $\eta_c ightarrow \omega \phi$

No significant $\eta_c \rightarrow \omega \phi$ events are observed, the uplimit at 90% C.L is given

$$Br(\eta_c \to \omega \phi) < \frac{N_{up}}{N_{J/\psi} \epsilon Br(1 - \sigma_{sys})}$$
$$= 2.5 \times 10^{-4},$$

Observation of $\eta_c \rightarrow \omega \omega$

BESIII Preliminary

• Based on $(1310.6 \pm 7.0) \times 10^6 J/\psi$ events

Clear cluster of signal can be seen

\Box Remove all non- $\omega\omega$ background using Q-factor method. Based on probabilistic event weights.

 \Box 4900 $\omega\omega$ events after background subtracted

PWA of $J/\psi \rightarrow \gamma \eta_c$, $\eta_c \rightarrow \omega \omega$

A similar PWA as in $\phi\phi$ channels are also performed

	$Br(\eta_c \to \omega \omega)$	
This measurement	$(2.88 \pm 0.1 \pm 0.46 \pm 0.68) \times 10^{-3}$	
PDG	$< 3.1 \times 10^{-3}$	
pQCD (PLB 702 (2011) 49–54)	1.3×10^{-4}	
Meson loop (PLB 711 (2012) 364–370)	1.76×10^{-3}	
Light fork states mixing	5.2×10 ⁻³ ¹⁰	

Isospin violated process $\eta(1405) \rightarrow \pi^+\pi^-\pi^0$ was observed, what about $\eta_c \rightarrow \pi^+\pi^-\pi^0$

BESIII has observed the $\eta(1405) \rightarrow f_0(980)\pi^0$ which is iso-spin violated process, And the width of f0(980) is very narrow Γ =9.5 \pm 1.1 MeV.

the f0-a0 mixing's contribution is small

Search for $\psi(3686) \rightarrow \gamma \eta_c \rightarrow \gamma \pi^+ \pi^- \pi^0$

PRD96, 112008(2017)

- Based on $448.1 \times 10^{6} \psi(3686)$ events
- Isospin violating(G Parity)

Uplimit at 90% C.L. $Br(\psi(3686) \rightarrow \gamma \eta_c) \times Br(\eta_c \rightarrow \pi^+ \pi^- \pi^0) < 1.6 \times 10^{-6}$

$e^+e^- \rightarrow \pi^+\pi^-h_c, h_c \rightarrow \gamma\eta_c, \eta_c \rightarrow exclusive channels$

arXiv: 1903.05375

- Using XYZ data at Ecms=4.23, 4.26, 4.36 and 4.42GeV
- Why use $h_c \rightarrow \gamma \eta_c$?
- ✓ Br($h_c \rightarrow \gamma \eta_c$) ≈50% is much larger than Br($\psi' \rightarrow \gamma \eta_c$) ≈ 0.3%.

✓ If we assume the non- η_c radiative decay rate of h_c and ψ' is at the same level, then the interference between $h_c \rightarrow \gamma \eta_c$ and non- η_c process $h_c \rightarrow \gamma +$ *hadrons* should be much smaller than ψ' or J/ ψ decay.

method

- The η_c is reconstructed inclusively by the recoiled mass of $(\gamma \pi^+ \pi^-)$.
- η_c is also reconstructed exclusively for four channels $\eta_c \rightarrow K^+ K^- \pi^0$, $K_s^0 K^\pm \pi^\mp$, $2(\pi^+ \pi^- \pi^0)$, $p\bar{p}$.
- Then the branching fraction of four exclusive channels can be measured to be

$$BF(\eta_c \to X) = \frac{N_{\text{exclusive}}^i / \left(BF(X \to Y) \times \epsilon_{\text{exclusive}}^i \right)}{N_{\text{inclusive}}^i / \epsilon_{\text{inclusive}}^i}.$$

Simultaneous fit

The plots here are the sum of four energy points.

A simultaneous fit is performed to all four channels and inclusive result from all four energy points

Branching fraction result

The result agree pretty well with previous measurement, with more and more XYZ Data that BESIII is still taking, better result can be expected.

The multiplicity of charged tracks from η_c decay

The multiplicity is measured using unfolding method

$$\chi^2 = \sum_{i=1}^8 \frac{(N_i^{\text{obs}} - \sum_{j=0}^8 \epsilon_{ij} \cdot N_j)^2}{(\sigma_i^{\text{obs}})^2},$$

Summary

- $\eta_c \rightarrow \phi \phi, \omega \phi, \omega \omega$ are measured. Br $(\eta_c \rightarrow VV)$ is larger than pQCD prediction, the non-perturbative effect might be needed.
- The isospin violated process $\eta_c \to \pi^+ \pi^- \pi^0$ is searched and no significant signal observed.
- $e^+e^- \rightarrow \pi^+\pi^-h_c$, $h_c \rightarrow \gamma\eta_c$, $\eta_c \rightarrow hadrons$ are measured with XYZ data
- The charged track multiplicity of η_c is measured.

SU(3) symmetry

• By SU(3) symmetry, the branching ration between the four VV channels of η_c decay is $\phi\phi:\omega\omega:\rho^0\rho^0:K^{*0}\overline{K}^{*0} = 1:1:1:2$

channel	Br (10 ⁻³)	
$\phi\phi$	$2.5 \pm 0.3^{+0.3}_{-0.7} \pm 0.6$	BESIII
ωω	$2.88 \pm 0.1 \pm 0.46 \pm 0.68$	BESIII
$ ho^0 ho^0$	6 ± 1.7	PDG
$K^{*0}\overline{K}^{*0}$	4.55 ± 1.3	PDG