

Charmonium rare decays at BESIII

Bo Zheng (For the BESIII Collaboration)

University of South China

QWG 2019, 13-17th May, Torino, Italy

BEPCII/BESIII

The BEPCII has achieved the designed luminosity 1×10^{33} cm⁻²s⁻¹ at Apr. 2016.

MDC: σ_{xy} =130 µm, dE/dx=6% σ_p/p = 0.5% at 1 GeV

TOF:

Plastic scintillator : σ_T (barrel): 80 ps MRPC: σ_T (endcap): 70 ps

EMC: CsI(TI)

At 1 GeV	σ _E (%)	$\sigma_{l}(mm)$
Barrel:	2.5	6.1
Endcap:	5	9

MUC: σ_{spatial} : 1.48 cm

Data samples at **BESIII**

World largest charmonium data sets directly produced from e^+e^- collision on J/ ψ and ψ (3686) resonance, large data sets taken at center-of-mass energies 3.773, 4.008, 4.18 GeV

OZI suppressed Weak semileptonic decay

Inclusive weak decay via single quark decay: ~(2-4)×10⁻⁸ Z.Phys.C.62.271

Predicted Br(J/ $\psi \rightarrow D_{(s)}^{(*)}/v$) : ~(0.01-4)×10⁻⁹

SU(3) symmetry	$\frac{Br(J/\psi \to D_S^- l^+ v)}{Br(J/\psi \to D^- l^+ v)} = \frac{Br(J/\psi \to D_S^{*-})}{Br(J/\psi \to D^{*-})}$	$\frac{l^+v)}{l^+v)} = \frac{ V_{cs} ^2}{ V_{cd} ^2} \approx 18.4$
QCD sum rule:	$\frac{Br(J/\psi \to D_s^- l^+ v)}{Br(J/\psi \to D^- l^+ v)} = 24.7 \qquad \frac{Br(J)}{Br(J)}$	$\frac{1/\psi \rightarrow D_s^{*-}l^+\nu)}{1/\psi \rightarrow D^{*-}l^+\nu)} \approx 15.1$
QCD sum rule:	$\frac{Br(J/\psi \rightarrow D_s^{*-}l^+v)}{Br(J/\psi \rightarrow D_s^-l^+v)} = 3.1$	See more in Aloni's talk
HQSS:	$\frac{Br(J/\psi \to D_s^{*-}l^+\nu)}{Br(J/\psi \to D_s^-l^+\nu)} = 1.6$	
BR can be enhanc	ed in	\rightarrow \sim \sim \sim s
MSSM, two higgs- top [_] color model	doublet model, zhengbo_usc@163.com	

FCNC Weak semileptonic decay

Forbidden at tree level by GIM mechanism

QCD sum rule:

 $\begin{array}{ll} Br(J/\psi \rightarrow \overline{D}{}^0 l^+ l^-) & \sim & 10^{-14} \\ Br(J/\psi \rightarrow \overline{D}{}^{*0} l^+ l^-) & \sim & 10^{-13} \end{array}$

New physics: 10⁻⁵ ~ 10⁻⁶

PRD 60 014011

Promising to constraint on new physics models

С

 \overline{C}

u

Weak hadronic decay

Same motivation as semileptonic channels

predictions from HQSS, light-front quark model. factorization approach (in 10⁻¹⁰)

				(= =)		
	Decay mode	AHEP 706543	PRD 78 074012	EPJC 55 607	IJMPA 14 937	The ratios also
	$\psi \to D_s^- \pi^+ + c. c.$	7.36	2.5	2.0	8.7	testable
	$\psi \to D^0 K^0 + c. c.$	1.39	0.5	0.36	2.8	
	$\psi \to D_s^- \rho^+ + c.c.$	50.0	28.0	12.6	36	Most promising
	$\psi \to D_s^{*-} \rho^+ + c. c.$	-	-	52.6	-	
	$\psi \to D^0 K^{*0} + c.c.$	8.12	5.5	1.54	10.27	
	$\psi \to D_s^- K^{*+} + c.c.$	2.79	-	0.82	2.12	Others:
	$\psi \to D^+ \rho^- + c.c.$	2.13	-	0.42	2.20	$\psi \to \Lambda_c^+ \overline{\Sigma}^- + c.c.$
	$\psi \to D_s^- K^+ + c. c.$	0.53	-	0.16	0.55	
201	$\psi^{9/5} \psi^{16} \rightarrow D^+ \pi^- + c. c.$	0.29	_zhengbo_usc	^{@163} .0 ^{om}	0.55	6

Invisible decay

SM predict:
$$\frac{\Gamma(J/\psi \to v\bar{v})}{\Gamma(J/\psi \to e^+e^-)} = \frac{27G^2 M_{J/\psi}^4}{256\pi^2 \alpha^2} (1 - \frac{8}{3} sin^2 \theta_W)^2 = 4.54 \times 10^{-7}$$

Predicted accessible light dark matter particles masses at BESIII, candidates for nonbaryonic dark matter of the universe, if couple to the SM via a new light gauge boson U, or exchange heavy fermions

$J/\psi \rightarrow \gamma$ +missing energy

2019/5/16

Large extra dimension scenario, Signals in K and π decays are small, while large in quarkonium decays

 $Br(J/\psi \rightarrow \gamma + \tilde{h}, \tilde{\phi}) = 10^{-5}$

Charge-Lepton Flavor Violating decays

Neutrino oscillation violates neutral lepton flavor, CLFV involving massive neutrino is very tiny, ideal place to probe new physics, predicted by many theoretical modes, Such as unparticle model, R-parity violating and large tan β SUSY, leptoquarks

See more in Alexey's talk

Unparticle model

$$\mathcal{M}(J/\psi(P) \to l(k)l'(k')) = \frac{c_{VV}^{cc} c_{VV}^{ll'}}{\Lambda_U^{2d_U-2}} \frac{A_{d_U} dy}{2sind_U \pi} \frac{m_{\psi} f_{\psi}}{s^{2-d_U}} \epsilon_{\psi}^{\mu} \bar{u}(k) \gamma_{\mu} v(k')$$

choose
$$d_U$$
=1.35, $\Lambda_U = 1$ TeV,
 $c_{VV}^{cc} c_{VV}^{ll'}$ =0.01

Predicted: $Br(J/\psi \rightarrow e\mu) = 7 \times 10^{-8}$

Baryon/Lepton number violated decay

Many SM extensions and GUTs predict proton decays. In this case, baryon number is violated while Δ (B-L) is conserved

Large matter-antimatter asymmetry observed in the universe, and negative proton decay experimental results, inspire many searches/predicts on BNV Models: mirror-matter model, flavor model, new gauge boson

mechanism.....

C, P, CP violated decay

C, P, CP violating processes in J/ ψ decays is approaching with high statistic J/ ψ sample at BESIII, which can be used to test the SM and uncover deviations.

take $J/\psi \rightarrow \phi \phi$ as example

$$\frac{\Gamma(J/\psi \to s\bar{s})_{W-\text{exchange}}}{\Gamma(J/\psi \to e^+e^-)} = \frac{1}{2} \left(\frac{M_{J/\psi}}{M_W}\right)^4 \cong 10^{-6}$$

Searches for $J/\psi \rightarrow V_1 V_2$ (V= $\gamma, \omega, \rho, \phi \dots$) are feasible at BESIII

Suppressed EM decay

$$\mathcal{M}_{EM} = \bar{u}(p_1)[(-ie\gamma^{\nu})\frac{\not{p}_2 + \not{p}_{\phi} + m_{e}}{(p_2 + p_{\phi})^2 - m_{e}^2}(-ie\gamma^{\mu}) \\ + (-ie\gamma^{\mu})\frac{-(\not{p}_1 + \not{p}_{\phi}) + m_{e}}{(p_1 + p_{\phi})^2 - m_{e}^2}(ie\gamma^{\nu})]v(p_2)\frac{1}{q_{\phi}^2}g_{\phi\gamma}\varepsilon_{\phi}^{\mu}\frac{1}{p_{\psi}^2}g_{\psi\gamma}\varepsilon_{\psi}^{*\nu}$$

Predicted: $Br(J/\psi \to \phi e^+ e^-) = 2.26 \times 10^{-8}$ 2019/5/16 zhengbo usc@163.com

Searches at BESIII

Topics	Channels	Publications
Weak decay (FCNC)	$J/\psi \rightarrow D_s^- e^+ \nu$ $J/\psi \rightarrow D_s^{*-} e^+ \nu$ $J/\psi \rightarrow \overline{D}^0 e^+ e^-$ $\psi(3686) \rightarrow \overline{D}^0 e^+ e^-$ $\psi(3686) \rightarrow \Lambda_c^+ \overline{p} e^+ e^-$ $J/\psi \rightarrow D_s^- \rho^+$ $J/\psi \rightarrow D_s^- \rho^+$ $J/\psi \rightarrow D^0 K^{*0}$	PRD 90 112014 PRD 96 111101 PRD 97 091102 PRD 89 071101
CLFV	$J/\psi ightarrow e\mu$	PRD 87 112007
BNV	$J/\psi ightarrow \Lambda_c^+ e^-$	PRD 99 072006
Rare EM	$J/\psi ightarrow \phi e^+e^-$	PRD 99 052010
C/P/CP	$J/\psi \to \gamma\gamma, \gamma\phi$ $J/\psi \to K_S^0 K_S^0$	PRD 90 092002 PRD 96 112001
Invisible	$J/\psi ightarrow$ invisible	Ongoing

Many other analysis are ongoing, charge conjugation is implied.

zhengbo_usc@163.com

Searches at BESIII

Торісз	Channels	Publications
Weak decay (FCNC)	$J/\psi \to D_s^- e^+ v$ $J/\psi \to D_s^{*-} e^+ v$ $J/\psi \to \overline{D}^0 e^+ e^-$ $\psi(3686) \to \overline{D}^0 e^+ e^-$ $\psi(3686) \to \Lambda^+ \overline{n} e^+ e^-$	PRD 90 112014 PRD 96 111101 PRD 97 091102
	$ \begin{aligned} \psi(\mathbf{J}\mathbf{U}\mathbf{U}\mathbf{U}) &\to \mathbf{D}_{c}^{-}\boldsymbol{\rho}^{+} \\ J/\psi &\to D^{0}K^{*0} \end{aligned} $	PRD 89 071101
CLFV		
BNV	$J/\psi ightarrow \Lambda_c^+ e^-$	PRD 99 072006
Rare EM	$J/\psi ightarrow \phi e^+e^-$	PRD 99 052010
C/P/CP	$J/\psi o \gamma\gamma, \gamma\phi \ J/\psi o K^0_S K^0_S$	
Invisible		

Search for $\psi(3686) \rightarrow \Lambda_c^+ \overline{p} e^+ e^-$ PRD 97 091102

- > 448 million ψ (3686)
- ≻ First search of $\psi(3686) \rightarrow \Lambda_c^+ \bar{p} e^+ e^-$
- → Check $M_{pK\pi}$ distribution, no signal is found in the signal region
- Large systematic uncertainty in MC modelling (~34%)
- ➤ Upper limits on BF (90% C.L.)

 $Br(\psi(3686) \to \Lambda_c^+ \bar{p}e^+e^-) < 1.7 \times 10^{-6}$

Search for $J/\psi \to \Lambda_c^+ e^-$

PRD 99 072006

- \succ 1.3 billion J/ψ
- \succ First search of $J/\psi \rightarrow \Lambda_c^+ e^-$
- Check $M_{pK\pi}$ distribution, no signal events in the signal region
- Total systematic uncertainty : ~7%
- > Upper limits on BF (90% C.L.)

 $Br(J/\psi \rightarrow \Lambda_c^+ e^-) < 6.9 \times 10^{-8}$

Search for $J/\psi \rightarrow \phi e^+ e^$ via $\psi(3686) \rightarrow J/\psi \pi^+ \pi^-$

- \geq 448 million ψ (3686)
- First search for new physics at EM rare decay $J/\psi \rightarrow \phi e^+ e^-$
- Check M_{KK} distribution in J/ψ signal region, no events observed in the signal region
- Total systematic uncertainty: ~9%
- ➢ Upper limits on BF (90% C.L.)

 $Br(J/\psi\to\phi e^+e^-)<1.2\times 10^{-7}$

One order higher than SM prediction ^{2019/5/16}in Chin. Phys. C 40 073104 ^{zhengbo_usc@163.com}

Summary

> A brief review on the charmonium rare decay topics

- Summary of BESIII studies on charmonium rare decays
- > Report three new charmonium rare decay results

World largest e+e- collision charmonium data sets at BESIII provide opportunity to study charmonium rare decays: high statistics, low background, close to boundary of new physics limit

Many results are promising with currently 10 billion J/ ψ and planned 3.2 billion ψ (3686)

Thanks for your attention!