

Charmonium transitions at BESIII

Yateng Zhang On behalf of BESIII Collaboration

May 13-17,2019 Quarkonium 2019

Outline

- Introduction
 Data samples
 Recent highlights
 - ✓ Study of EM Dalitz decays $\chi_{cJ} \rightarrow \mu^+ \mu^- J/\psi$
 - ✓ Search for $h_c \rightarrow \pi^+\pi^-$ J/ ψ via ψ (3686) $\rightarrow \pi^+\pi^-\pi^0$ J/ ψ
 - ✓ Updates of $\psi(2S) \rightarrow \gamma \chi_{cJ}$ at BESIII

Summary

Introduction

- A) Radiative 29%
 - They are sensitive to inner structure of 1. hadrons, quite straightforward to evaluate in \overline{cc} potential models.
 - 2. E1 transition is well measured in general, but still no one model explain all the exp. Eur. phy. J.491 C76, 601 (2016) results.

Hadronic 56% B)

- The QCD multipole expansion (QCDME) is a 1. feasible approach to hadronic transitions.
- The calculation depends on experimental 2. inputs and works well for transitions of heavy qq states below open flavor threshold.

B) Hadonic

transition

BESIII data samples 4160 3 fb⁻¹ J/ψ 4420 Ψ' 4040 1×10^{10} 0.5×10^{9} 1 fb⁻¹ 0.5 fb⁻¹ 6 4.01 BES98, PRL 84(2000)594 $\psi(4.16)$ BES 99, PRL 88(2002)101802 1/9(3.10) ₽ (3.69) 4600 CrystalBall 5 0.5 fb⁻¹ Gamma2 \bigcirc Markl pluto ÷ Ψ(3770) 4 2..9 fb⁻¹ 2175 0.1 fb⁻¹ З 2 4260++4230 4360 1.9 fb⁻¹ 0.5 fb⁻¹ 1 s"Ds Thresholds 슬날 0 2 з 4 Ecm (GeV)

World largest J/ψ, ψ(3686), ψ(3770), ... samples

R Value

The following charmonium transition analysis at BESIII will be reported.

- ✓ Study of electromagnetic Dalitz decays χ_{cJ} → $\mu^+\mu^-$ J/ ψ
- ✓ Search for $h_c \rightarrow \pi^+\pi^-$ J/ ψ via ψ (3686) → $\pi^+\pi^-\pi^0$ J/ ψ
- ✓ Updates of $\psi(2S) \rightarrow \gamma \chi_{cI}$ at BESIII

Study of electromagnetic Dalitz decays $\chi_{cJ} \rightarrow \mu^+ \mu^- J/\psi$

- Study of EM Dalitz decays plays an important role in revealing the structure of mesons and the interactions of the mesons with the electromagnetic field.
- The EM Dalitz decays in charmonium transitions have access to the EM transition form factors (TFFs) of charmonium states.

Study of electromagnetic Dalitz decays $\chi_{cJ} \rightarrow \mu^+ \mu^- J/\psi$

TABLE I. Signal yields, detection efficiency, branching fraction (or upper limit at 90% C.L.) and ratio of the branching fractions for each decay channel. Here the first uncertainty is statistical and the second systematic.

Decay mode	Yields	Efficiency (%)	Branching fraction	$\frac{\mathcal{B}(\chi_{cJ} \to \mu^+ \mu^- J/\psi)}{\mathcal{B}(\chi_{cJ} \to e^+ e^- J/\psi)}$
$ \frac{\chi_{c0} \to \mu^+ \mu^- J/\psi}{\chi_{c1} \to \mu^+ \mu^- J/\psi} \\ \chi_{c2} \to \mu^+ \mu^- J/\psi $	< 9.5	9.40	$< 2.0 \times 10^{-5}$	< 0.14
	221.9 \pm 15.3	16.94	$(2.51 \pm 0.18 \pm 0.20) \times 10^{-4}$	(6.73 ± 0.51 ± 0.50) × 10 ⁻²
	218.9 \pm 16.1	18.42	$(2.33 \pm 0.18 \pm 0.29) \times 10^{-4}$	(9.40 ± 0.79 ± 1.15) × 10 ⁻²

Study of electromagnetic Dalitz decays $\chi_{cJ} \rightarrow \mu^+ \mu^- J/\psi$

Search for $h_c \rightarrow \pi^+ \pi^- J/\psi$ via $\psi(3686) \rightarrow \pi^+ \pi^- \pi^0 J/\psi$ PRD 97, 052008 (2018)

- The hadronic transitions of the spin-singlet P-wave state hc(1P₁) are one of the best places to test the spin-spin interaction between heavy quarks.
- In the framework of QCDME, the branching fraction of $h_c \rightarrow \pi^+\pi^- J/\psi$ (including charged and neutral modes) is predicted to be 2%, while it is predicted to be 0.05% when neglecting the nonlocality in time.
 PRD 37, 1210 (1988)
 Phys. Rev. D 52, 1710 (1995)
- ► The first observation of the h_c was reported by CLEO in a study of the cascade decay $\psi(3686) \rightarrow \pi^0 h_c$; $h_c \rightarrow \gamma \eta_c$; the branching fractions $\mathcal{B}(\psi(3686) \rightarrow \pi^0 h_c)$ and $\mathcal{B}(h_c \rightarrow \gamma \eta_c)$ were measured for the first time by BESIII.

Search for $h_c \rightarrow \pi^+ \pi^- J/\psi$ via ψ (3686) $\rightarrow \pi^+ \pi^- \pi^0 J/\psi$

- 4.48 × 10⁸ ψ(3686) events at BESIII are used.
- > The J/ ψ is reconstructed in its decay to an e^+e^- or $\mu^+\mu^-$ pair.

Dominant component: ψ (3686) $\rightarrow \eta J/\psi$

Search for $h_c \rightarrow \pi^+ \pi^- J/\psi$ via ψ (3686) $\rightarrow \pi^+ \pi^- \pi^0 J/\psi$

- No signal is observed.
- ► The upper limit of the product of branching fractions $\mathcal{B}(\psi(3686) \rightarrow \pi^0 h_c) \cdot \mathcal{B}(h_c \rightarrow \pi^+ \pi^- J/\psi)$ at the 90% C.L. is determined to be 2.0 × 10⁻⁶.
- ► Using the PDG value for the branching fraction of $\psi(3686) \rightarrow \pi^0 h_c$, the upper limit on $\mathcal{B}(h_c \rightarrow \pi^+\pi^- J/\psi)$ is determined to be 2.4 × 10⁻³.

It is the most stringent upper limit to date.

It is noted that the measured branching fraction is smaller than the prediction(2.0%) in theory by one order in magnitude, but does not contradict the prediction(0.05%).

Updates of $\psi(2S) \rightarrow \gamma \chi_{cJ}$ at BESIII

Inclusive: $\psi(2S) \rightarrow \gamma X$;

Exclusice: $\psi(2S) \rightarrow \gamma \chi_{cJ}, \chi_{cJ} \rightarrow 2/4$ prong

- > Using 1.06 imes 10⁸ ψ (3686) events at BESIII.
- Unbinned maximum simultaneous fits to the photon energy distributions of data.

$$\succ \mathcal{B}(\psi(3686) \rightarrow \gamma \chi_{cJ}) = \frac{N_{\psi(3686) \rightarrow \gamma \chi_{cJ}}}{\epsilon_{\psi(3686) \rightarrow \gamma \chi_{cJ}} \times N_{\psi(3686)}}$$

$$\mathcal{B}(\psi(3686) \to \gamma \chi_{cJ}) \times \mathcal{B}(\chi_{cJ} \to \gamma J/\psi)$$

$$= \frac{N(\chi_{cJ} \to \gamma J/\psi)}{\epsilon_{\chi_{cJ} \to \gamma J/\psi} \times N_{\psi(3686)}}$$

$$\mathcal{B}(\chi_{cJ} \to \gamma J/\psi)$$

$$= \frac{\mathcal{B}(\psi(3686) \to \gamma \chi_{cJ}) \times \mathcal{B}(\chi_{cJ} \to \gamma J/\psi)}{\mathcal{B}(\psi(3686) \to \gamma \chi_{cJ})} = \frac{\epsilon_{\psi(3686) \to \gamma \chi_{cJ})} \times \mathcal{B}(\chi_{cJ} \to \gamma J/\psi)}{\epsilon_{\chi_{cJ} \to \gamma J/\psi} \times N_{\psi(3686) \to \gamma \chi_{cJ}}}$$

PRD 96, 032001 (2017)

Updates of $\psi(2S) \rightarrow \gamma \chi_{cI}$ at BESIII

Due l'es Destin		$O(1, \dots, (0^{\ell}))$	PDG [7] (%)
Branching Fraction	This analysis (%)	Other (%)	Average
$\mathcal{B}(\psi(3686) \to \gamma \chi_{c0})$	$9.389 \pm 0.014 \pm 0.332$	$9.22 \pm 0.11 \pm 0.46$ [9]	9.2 ± 0.4
$\mathcal{D}(\mathcal{D}(\mathcal{D}(\mathcal{D})))$	0.005 1.0011 1.0050		0.0 1.0 5

TABLE IV. Our branching fraction results, other results, and PDG compilation results.

PRD 96, 032001 (2017)

Branching Fraction	This analysis (%)	Other (%)	PDG [7] (%) Average	PDG [7] (%) Fit
$ \begin{aligned} \mathcal{B}(\psi(3686) \to \gamma \chi_{c0}) \\ \mathcal{B}(\psi(3686) \to \gamma \chi_{c1}) \\ \mathcal{B}(\psi(3686) \to \gamma \chi_{c2}) \end{aligned} $	$\begin{array}{c} 9.389 \pm 0.014 \pm 0.332 \\ 9.905 \pm 0.011 \pm 0.353 \\ 9.621 \pm 0.013 \pm 0.272 \end{array}$	$\begin{array}{c} 9.22 \pm 0.11 \pm 0.46 \ [9] \\ 9.07 \pm 0.11 \pm 0.54 \ [9] \\ 9.33 \pm 0.14 \pm 0.61 \ [9] \end{array}$	9.2 ± 0.4 8.9 ± 0.5 8.8 ± 0.5	$\begin{array}{c} 9.99 \pm 0.27 \\ 9.55 \pm 0.31 \\ 9.11 \pm 0.31 \end{array}$
$\mathcal{B}(\psi(3686) \to \gamma \chi_{c0}) \times \mathcal{B}(\chi_{c0} \to \gamma J/\psi)$	$0.024 \pm 0.015 \pm 0.205$	$0.125 \pm 0.007 \pm 0.013$ [31] $0.151 \pm 0.003 \pm 0.010$ [15] $0.158 \pm 0.003 \pm 0.006$ [16]	0.131 ± 0.035	0.127 ± 0.006
$\mathcal{B}(\psi(3686) \to \gamma \chi_{c1}) \times \mathcal{B}(\chi_{c1} \to \gamma J/\psi)$	$3.442 \pm 0.010 \pm 0.132$	$3.56 \pm 0.03 \pm 0.12$ [31] $3.377 \pm 0.009 \pm 0.183$ [15] $3.518 \pm 0.01 \pm 0.120$ [16]	2.93 ± 0.15	3.24 ± 0.07
$\mathcal{B}(\psi(3686) \to \gamma \chi_{c2}) \times \mathcal{B}(\chi_{c2} \to \gamma J/\psi)$	$1.793 \pm 0.008 \pm 0.163$	$\begin{array}{c} 1.95 \pm 0.02 \pm 0.07 \ [31] \\ 1.874 \pm 0.007 \pm 0.102 \ [15] \\ 1.996 \pm 0.008 \pm 0.070 \ [16] \end{array}$	1.52 ± 0.15	1.75 ± 0.04
$ \mathcal{B}(\chi_{c0} \to \gamma J/\psi) \\ \mathcal{B}(\chi_{c1} \to \gamma J/\psi) \\ \mathcal{B}(\chi_{c2} \to \gamma J/\psi) $	$\begin{array}{c} 0.25 \pm 0.16 \pm 2.15 \\ 34.75 \pm 0.11 \pm 1.70 \\ 18.64 \pm 0.08 \pm 1.69 \end{array}$	$2 \pm 0.2 \pm 0.2$ [32] 37.9 $\pm 0.8 \pm 2.1$ [32] 19.9 $\pm 0.5 \pm 1.2$ [32]		1.27 ± 0.06 33.9 ± 1.2 19.2 ± 0.7

New results are consistent with previous measurements, but more precise.

Summary

- BESIII has obtained many results about charmonium transitions since its first physics run started from 2009.
- ► The decays $\chi_{cJ} \rightarrow \mu^+ \mu^- J/\psi$ through the radiative transitions $\psi(2S) \rightarrow \gamma \chi_{cJ}$ have been observed.
- A search for the hadronic transition $h_c \rightarrow \pi^+\pi^- J/\psi$ is carried out via $\psi(3686) \rightarrow \pi^+\pi^-\pi^0 J/\psi$. No signal is observed.
- **b** Using a sample of 106 million $\psi(3686)$ decays, the branching fractions of $\psi(2S) \rightarrow \gamma \chi_{cI}$ are measured with improved precision.
- After 2018's J/ψ data taking, the amount of total J/ψ events has increased from 1.3 billion to 10 billion. More and more interesting results are expected in the near future.

Thanker

Backup

Study of electromagnetic Dalitz decays $\chi_{cI} \rightarrow e^+ e^- J/\psi$

TABLE I. Signal yields, detection efficiencies, the branching fractions, and the ratios of the branching fractions. Here, the first uncertainty is statistical and the second systematic.

Mode	Yields	Efficiency(%)	Branching fraction	$ \begin{array}{c} \mathcal{B}(\psi(3686) \rightarrow e^+e^-\chi_{cJ}) / \\ \mathcal{B}(\psi(3686) \rightarrow \gamma\chi_{cJ}) \end{array} $	${{\cal B}(\chi_{cJ} ightarrow e^+ e^- J/\psi) / \over {\cal B}(\chi_{cJ} ightarrow \gamma J/\psi)}$
$\overline{\psi(3686)} \rightarrow e^+ e^- \chi_{c0}$	48 ± 10	6.06	$(11.7\pm2.5\pm1.0)\times10^{-4}$	$(9.4 \pm 1.9 \pm 0.6) \times 10^{-3}$	
$\psi(3686) \rightarrow e^+ e^- \chi_{c1}$	873 ± 30	5.61	$(8.6 \pm 0.3 \pm 0.6) \times 10^{-4}$	$(8.3 \pm 0.3 \pm 0.4) \times 10^{-3}$	
$\psi(3686) \rightarrow e^+ e^- \chi_{c2}$	227 ± 16	3.19	$(6.9 \pm 0.5 \pm 0.6) \times 10^{-4}$	$(6.6 \pm 0.5 \pm 0.4) \times 10^{-3}$	
$\chi_{c0} \rightarrow e^+ e^- J/\psi$	56 ± 11	6.95	$(1.51 \pm 0.30 \pm 0.13) \times 10^{-4}$		$(9.5 \pm 1.9 \pm 0.7) \times 10^{-3}$
$\chi_{c1} \rightarrow e^+ e^- J/\psi$	1969 ± 46	10.35	$(3.73 \pm 0.09 \pm 0.25) \times 10^{-3}$		$(10.1 \pm 0.3 \pm 0.5) \times 10^{-3}$
$\chi_{c2} \rightarrow e^+ e^- J/\psi$	1354 ± 39	11.23	$(2.48 \pm 0.08 \pm 0.16) \times 10^{-3}$		$(11.3 \pm 0.4 \pm 0.5) \times 10^{-3}$

PRL 118, 221802 (2017)