Charmonium resonances (from lattice QCD)

Sasa Prelovsek

University of Ljubljana, Slovenia Jozef Stefan Institute, Slovenia Regensburg University

QWG 2019, International workshop of heavy quarkonium Torino, 13-17 May 2019

M. Padmanath, S. Collins, D. Mohler, S. Piemonte, S.P., A. Schafer, S. Weishaeupl : 1811.04116, PRD 2019

S. Piemonte, S. Collins, M. Padmanath, D. Mohler, S.P. : 1905.03506

Regensburg collaboration RQCD (mostly)

S. Prelovsek, Charmonium resonances

Outline

Lattice QCD study of

- Ground and excited conventional charmonia
- charmonia with all J^{PC} (J ≤ 3), momenta P=0 and P≠0 omitting strong decays determine : m or E, J^{PC}
- charmonium resonances with J^{PC} = 1⁻⁻ [Ψ(3770)] and 3⁻⁻ [X(3842)], taking strong decays to <u>D</u>D into account (applying Luscher's method) determine: m and Γ, J^{PC}
- Very briefly on exotic quarkonium-like channels:
- pentquark P_c channel
- tetraquark Z_b channel

Conventional charmonia below and above open-charm threshold <u>D</u>D

One of the motivations for lattice QCD study: Verify lattice QCD treatment of conventional charmonia

Only then apply analogous treatment for more challenging charmonium-like states

S. Prelovsek, Charmonium resonances

S. Prelovsek, Charmonium resonances

Lattice ensembles

- CLS ensembles with dynamical u/d and s quarks: $m_{\pi} \approx 280$ MeV, $m_{K} \approx 467$ MeV
- two values of m_c to explore dependence of charmonia on the position of <u>D</u>D thresholds: $m_D \approx 1762$ MeV, 1927 MeV ($m_D^{exp}=1867$ MeV)

```
a≈0.086 fm, N<sub>L</sub>=24 & 32
```

 $|n\rangle$ denotes eigenstate of H_{QCD}

Info from lattice :
$$E_n$$
, $Z_i^n = \langle 0 | Q_i^n \rangle$

Large number (15-30) of operators with the quantum numbers of desired channel quantum number : in continuum: J^{PC}

on the lattice: lattice irrep $\boldsymbol{\Lambda}$

$$\mathcal{O}^{\overline{c}c} = \overline{c} \Gamma c$$
$$\mathcal{O}^{\overline{D}D} = (\overline{c} \Gamma a) (\overline{a} \Gamma_c c) = \overline{D} D$$

$$= (c \mathbf{1}_1 q)(q \mathbf{1}_2 c) = \mathbf{1}$$

charm annihillation omitted

$$C_{ij}(t) = \left\langle 0 \right| \mathcal{Q}_{i}(t) \mathcal{Q}_{j}^{+}(0) \left| 0 \right\rangle = \sum_{n} Z_{i}^{n} Z_{j}^{n*} e^{-E_{n} t}$$

Q[n]

M. Padmanath, S. Collins, D. Mohler, S. Piemonte, S.P., A. Schafer, S. Weishaeupl : 1811.04116, PRD 2019

charmonia with all J^{PC} (J \leq 3) omitting strong decays

employing only operators $O^{\overline{c}c} = \overline{c} \Gamma c$ (10-30 for quantum number)

(extensive spectra using similar approach HSC: 1610.01073)

Charmonia with P≠0 : determining E and J^{PC}

refers to quantum numbers in charmonium's rest frame

- \blacktriangleright Experiment: charmonium -> H₁ H₂
- Lorentz transformation of decay products to charmonium's rest frame
- observed partial wave and q.n. of H_1 and H_2 render J^{PC} of charmonium in its rest frame
- > <u>Lattice</u>: Above strategy can not be followed on the lattice
- Strategy : following [HSC, Thomas et al, 1107.1930] used for light isovectors
 each irrep Λ contains several J^P; for example: A₁ irrep for P=1 x 2π/N₁ contains J^P= 0+, 1-, 2+, 3-

- determine overlaps $Z_i^n = \langle 0 | Q_i^{[J^{PC},\lambda]} | n \rangle$ from lattice
- eigen-state $|J^{P},\lambda\rangle$ couples better to $O^{[J, P, \lambda]}$ than to $O^{[J', P', \lambda']}$

E and J^{PC} of charmonia at P=0 and P≠0

 $E \approx \sqrt{m^2 + P^2}$ J^{PC} denote quantum numbers in particle's rest frame

Strategy

- simulate <u>D</u>D scattering on the lattice
- determine scattering amplitude

 $S_l(E) = \exp[2i\delta_l(E)], \quad l = 1,3$

 $\sigma(E) \propto |S(E) - 1|^2 \propto |t(E)|^2$

 m_R and Γ_R from Breit-Wigner type fits

Charmonia with J^{PC}=1⁻⁻ and 3⁻⁻ taking into account their strong transitions to <u>D</u>D

- only 1 previous lattice study extracted width of charmonium resonances (0⁺⁺ and 1⁻⁻) Lang, Leskovec, Mohler, S.P., 1503.05363, JHEP 2015
- Present work:

S. Piemonte, S. Collins, M. Padmanath, D. Mohler, S.P. : 1905.03506

Luscher 1991

Relation between eigen-energies E and $S_1(E) = exp[2i \delta_1(E)]$

S. Prelovsek, Charmonium resonances

Fit of phase shifts for l=1,3 from E_n

S. Prelovsek, Charmonium resonances

Scattering amplitude t(E) in complex energy plane

$$S_{l}(E) = \exp[2i\delta_{l}(E)] = 1 + 2i\rho t_{l}(E)$$

$$t_{l}(s) = \frac{1}{\rho \cot(\delta_{l}) - i\rho}$$

$$\rho = \frac{2p}{\sqrt{s}} = \sqrt{1 - 4\frac{m_{D}^{2}}{s}}.$$

$$poles in t(s) related to resonance and bound states$$
Fig for l=1 and m_p ≈1762 MeV: one resonance, one bound state, one virtual bound state
$$s. Prelovsek, Charmonium resonance$$

$$u(25) bound state = \frac{2m_{D}}{2m_{D}}$$

$$r(25) bound state =$$

 $m = m^{\text{lat}} - M^{\text{lat}}_{av} + M^{\exp}_{av}$ $M_{av} = \frac{1}{4}(m_{\eta_c} + 3m_{J/\psi})$ Masses of charmonium resonances and bound states

Investigated conventional charmonia are not very sensitive to position of DD threshold.

16/20

Briefly on exotic quarkonium-like channels

Lattice study of P_c pentaguark channel

 $P_c = \text{uud}\overline{c}c \rightarrow (\text{uud})(\overline{c}c)$

light-baryon charmonium

 \rightarrow (uuc) ($\overline{c}d$) charmed-baryon charmed-meson

Question we address: Do Pc resonances appear in one-channel $p J/\psi$ scattering on the lattice (in approximation where this channel is decoupled from other channels)

 $p J/\psi \rightarrow P_c \rightarrow p J/\psi$

We simulate this scattering and cover also the energy region of P_c for the first time.

The answer from our lattice simulation : No.

U. Skerbis, S. Prelovsek, 1811.02285 to appear in PRD

This indicates that the coupling of p J/ ψ channel with other two-hadron channels is likely responsible for Pc resonances in experiment.

This is in line with LHCb results, where Pc's are found near other thresholds. This by itself indicates that other channels are important.

Lattice study of Z_b tetraquark channel

Lattice simulation of Zb channel with static b and <u>b</u> Inspired by Bicudo, Peters, Wagner [1602.07621, 1709.03306] Extracted $E_n(r)$ ongoing study with J. Petkovic and H. Bahtiyar conclusions concerning Z_h from this approach: coming soon

Fock components incorporated:

new

sizable attraction found in this channel

Conclusions

Charmonium spectrum from a lattice study at a single lattice spacing and $m_{\pi} \approx 280$ MeV (not extrapolated to physical point)

Backup

PDG 2018

$n \ ^{2s+1}\ell_J \ \ J^{PC}$	$I = 0$ $c\overline{c}$	I = 0 $b\overline{b}$
$1 {}^{1}S_{0} 0^{-+}$	$\eta_c(1S)$	$\eta_b(1S)$
$1 {}^{3}S_{1}$ 1	$J/\psi(1S)$	$\Upsilon(1S)$
$1 {}^{1}P_{1}$ 1^{+-}	$h_c(1P)$	$h_b(1P)$
$1 {}^{3}P_{0} \qquad 0^{++}$	$\chi_{c0}(1P)$	$\chi_{b0}(1P)$
$1 {}^{3}P_{1}$ 1^{++}	$\chi_{c1}(1P)$	$\chi_{b1}(1P)$
$1 {}^{3}P_{2} \qquad 2^{++}$	$\chi_{c2}(1P)$	$\chi_{b2}(1P)$
$1 {}^{3}D_{1}$ $1^{}$	$\psi(3770)$	
$1 {}^{3}D_{3}$ $3^{}$	X(3842)	
$2 {}^1S_0 \qquad 0^{-+}$	$\eta_c(2S)$	$\eta_b(2S)$
$2 {}^3S_1 1^{}$	$\psi(2S)$	$\Upsilon(2S)$

S. Piemonte, S. Collins, M. Padmanath, D. Mohler, S.P. : 1905.03506

	J^{PC}	lat (present work)	lat (present work)	\exp	lat [16]
		$\kappa_c = 0.12522$	$\kappa_c = 0.12315$	$ar{D}^0 D^0 / D^+ D^-$	
$m_D [{ m MeV}]$		1762(2)	1927(2)	$\bar{m}_D \simeq 1867 \; \mathrm{MeV}$	$1763(22)(18)^*$
$m_{D_s} [{ m MeV}]$		1818(1)	1981(1)	1968.34(7)	
$M_{ m av} [{ m MeV}]$		2820(3)	3103(3)	3068.6(2)	$3119(9)(33)^*$
$m_{\pi} [{ m MeV}]$		280	280	$\bar{m}_{\pi} \simeq 137 \text{ MeV}$	266
$\psi(3770)$	1	resonance	bound st.	resonance [44]	resonance
g		${f 16.0}(^{+2.1}_{-0.2})$	${f 18.9}(^{+0.8}_{-0.7})$	18.7(9)	13.2(1.2)
$m-M_{ m av}~[{ m MeV}]$		711(7)	707(7)	704.25(35)	715(7)
$m-2m_D~[{ m MeV}]$		9(7)	-43(8)	38.52(35)	
$m [{ m MeV}]$		3780(7)	3776(7)	$3773.13(35)^{ m a}$	3784(7)
$\psi(2S)$	1	bound st.	bound st.	bound st. [44]	bound st.
$m-M_{\mathrm{av}}~[\mathrm{MeV}]$		597(10)	596(9)	617.347(25)	605(6)
$m-2m_D~[{ m MeV}]$		-105(11)	-154(10)	-48.383(25)	
$m [{ m MeV}]$		3666(10)	3665(9)	3686.097(25)	3674(6)
X(3842)	3	resonance	resonance	resonance [21]	
$m - M_{\rm av} [{ m MeV}]$		$762(^{+10}_{-16})$	$754(^{+4}_{-7})$	773.9(2)	
$m-2m_D~[{ m MeV}]$		$59(^{+11}_{-16})$	$4(^{+9}_{-3})$	108.2(2)	
$m [{ m MeV}]$		${f 3831}(^{+10}_{-16})$	${f 3822}(^{+4}_{-7})$	3842.7(2)	

The challenge to determine J^P

${f p}=(0,0,1),\ Dic_4$						
$\Lambda~(dim)$	$ \lambda ^{ ilde \eta}$	J^P (at rest)				
A_1 (1)	0+	$0^+,\ 1^-,\ 2^+,\ 3^-$				
A_2 (1)	0-	$0^-,\ 1^+,\ 2^-,\ 3^+$				
E(2)	1	$1^{\pm}, \ 2^{\pm}, \ 3^{\pm}$				
	3	3^{\pm}				
B_1 (1)	2	$2^{\pm}, 3^{\pm}$				
B_2 (1)	2	$2^{\pm}, 3^{\pm}$				

FIG. 11. J^P -identified charmonium spectrum in the moving frame with $\mathbf{p} = (0, 0, 1)$. Irreps Λ^C of group Dic_4 are presented. The colors indicate J^P of states according to the color-coding (21).

-, 3-

 2^{+}

 3^{\pm}

 3^{\pm}

٠,

,

 3^{\pm}

proton J/Ψ scattering in lattice QCD in Pc channels

