Searches for charmonium-like (exotic) XYZ states decaying to light hadrons at BESIII

Frank Nerling
GU Frankfurt, GSI Darmstadt
on behalf of the BESIII Collaboration

QWG 2019
May 13th - 17th 2019, Torino, Italy

Outline

• Introduction & motivation
• Searches for charmless decays
 ➢ Searches for Y(4260) via cross-section line-shapes
 ➢ Searches for Z_c(3900) decays to light hadrons
• Summary
Famous exotic (?) XYZ states

\[\Upsilon(4260) \rightarrow J/\psi \pi \pi \]

\[Z_c(3900) \rightarrow J/\psi \pi \]

[1] [PRL 118 (2017) 092001]

Motivation

• Series of unexpected vector charmonium-like states
 - (mainly) observed in decays associated with charmonia
• R-value at 4.0 – 4.6 GeV is about ~ 4 => total cross-section 16 nb
Motivation

- Series of unexpected vector charmonium-like states
 - (mainly) observed in decays associated with charmonia
- R-value at 4.0 – 4.6 GeV is about $\sim 4 \Rightarrow$ total cross-section 16 nb
 - Open charm: 10 nb \Rightarrow The other 6 nb only charmonium transition?

W.M. Song, [Ph.D. thesis 2015]

Inclusive open charm cross-section
Motivation

- Series of unexpected vector charmonium-like states (mainly) observed in decays associated with charmonia
- R-value at $4.0 - 4.6$ GeV is about ~ 4 => total cross-section 16nb
- Open charm: 10 nb => The other 6 nb only charmonium transition

![Graph showing R value vs. E_{cm}](graph.png)

$R = \frac{\sigma(e^-e^+ \rightarrow \text{hadrons})}{\sigma(e^-e^+ \rightarrow \mu^-\mu^+)}$

[PRL 88 (2002) 101802]
• Series of unexpected vector charmonium-like states
 - (mainly) observed in decays associated with charmonia
• \(R \)-value at 4.0 – 4.6 GeV is about ~ 4 => total cross-section 16 nb
 - Open charm: 10 nb => The other 6 nb only charmonium transition?

Motivation

-> What about charmless decays of \(Y(4260) \) & Co?

As predicted e.g. by:
PLB 628 (2005) 215, or
CPC 39 (2015) 063102
Cross-section measurement

$\sigma_B(e^+e^- \rightarrow p\bar{p}\pi^0)$ between 4.0 – 4.6 GeV

- Cross-sections $e^+e^- \rightarrow \psi(3770) \rightarrow p\bar{p}\pi^0$ around 3.77 GeV measured previously, interferences included (resonant with continuum production):
 - Two solutions of same probability
 - a) $33.8 \pm 1.8 \pm 2.1$ pb, and
 - b) < 0.22 pb at 90% CL
 - Both fit solutions consistent with destructive interference (270°)

- Cross-section $p\bar{p} \rightarrow \psi(3770)\pi^0$
 - Using constant decay amplitude approximation: 122 ± 10 nb, and
 - < 0.79 nb at 90% CL at 5.26 GeV (PANDA)

Cross-section measurement
\[\sigma_B(e^+e^- \rightarrow p\bar{p}\pi^0) \] between 4.0 – 4.6 GeV

- PWA to correctly determine detection efficiencies
 - Dalitz plot at 4.26 GeV
 - MC data generated from PWA result vs. real data

- Multi intermediate baryons:
 - \(N^*, \Delta^* \rightarrow p\bar{p}\pi^0, p\pi^0, \bar{p}\pi^0 \)
 - \(\rho^*, \omega^* \rightarrow p\bar{p} \)

- Partial wave analysis:
 - Covariant tensor formalism
 - [J. Phys. G28,233]
 - Breit-Wigner param. of \(\rho^*N^*, \Delta^* \) [RPD80,052004]
 - Direct process \(e^+e^- \rightarrow p\bar{p}\pi^0: 1^{--} \) or \(3^{--} p\bar{p} \) system
 - Resonance > 5\(\sigma \) are retained

Cross-section measurement \(\sigma_B(e^+e^- \rightarrow p\bar{p}\pi^0) \) between 4.0 – 4.6 GeV

- PWA to correctly determine detection efficiencies
 - Dalitz plot at 4.26 GeV
 - MC data generated from PWA result vs. real data

- Multi intermediate baryons:
 - \(N^*, \Delta^* \rightarrow p\bar{p}\pi^0, p\pi^0, \bar{p}\pi^0 \)
 - \(\rho^*, \omega^* \rightarrow p\bar{p} \)

- Partial wave analysis:
 - Covariant tensor formalism
 - Breit-Wigner param. of \(\rho^*N^*, \Delta^* \) [RPD80,052004]
 - Direct process \(e^+e^- \rightarrow p\bar{p}\pi^0 \): 1-- or 3-- \(p\bar{p} \) system
 - Resonance > 5\(\sigma \) are retained

Cross-section measurement
$\sigma_B(e^+e^- \rightarrow p\bar{p}\pi^0)$ between 4.0 – 4.6 GeV

- Born cross section:
 - radiative correction factor $(1 + \delta^r)$
 - vacuum polarisation factor $(1 + \delta^v)$

$$\sigma^B = \frac{N^{\text{obs}}}{\mathcal{L} \cdot (1 + \delta^r) \cdot (1 + \delta^v) \cdot \epsilon \cdot B_{\pi^0}}$$

<table>
<thead>
<tr>
<th>\sqrt{s} (GeV)</th>
<th>\mathcal{L} [pb$^{-1}$]</th>
<th>$(1 + \delta^r)$</th>
<th>$(1 + \delta^v)$</th>
<th>N^{obs}</th>
<th>ϵ [%]</th>
<th>σ^B [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.008</td>
<td>482.0</td>
<td>0.967</td>
<td>1.044</td>
<td>1074 ± 33</td>
<td>43.9 ± 0.9</td>
<td>5.09 ± 0.18 ±0.26 -0.24</td>
</tr>
<tr>
<td>4.085</td>
<td>52.6</td>
<td>0.992</td>
<td>1.052</td>
<td>106 ± 11</td>
<td>43.7 ± 1.4</td>
<td>4.47 ± 0.46 ±0.27 -0.21</td>
</tr>
<tr>
<td>4.189</td>
<td>43.1</td>
<td>1.025</td>
<td>1.056</td>
<td>75 ± 9</td>
<td>44.7 ± 1.0</td>
<td>3.64 ± 0.43 ±0.19 -0.18</td>
</tr>
<tr>
<td>4.208</td>
<td>54.6</td>
<td>1.031</td>
<td>1.057</td>
<td>93 ± 10</td>
<td>44.9 ± 1.6</td>
<td>3.52 ± 0.39 ±0.17 -0.22</td>
</tr>
<tr>
<td>4.217</td>
<td>54.1</td>
<td>1.034</td>
<td>1.057</td>
<td>82 ± 10</td>
<td>43.4 ± 1.3</td>
<td>3.24 ± 0.37 ±0.18</td>
</tr>
<tr>
<td>4.226</td>
<td>1047.3</td>
<td>1.037</td>
<td>1.056</td>
<td>1611 ± 41</td>
<td>45.2 ± 0.5</td>
<td>3.15 ± 0.08 ±0.14</td>
</tr>
<tr>
<td>4.242</td>
<td>55.6</td>
<td>1.042</td>
<td>1.056</td>
<td>89 ± 9</td>
<td>44.6 ± 1.1</td>
<td>3.30 ± 0.36 ±0.19 -0.15</td>
</tr>
<tr>
<td>4.258</td>
<td>825.6</td>
<td>1.048</td>
<td>1.054</td>
<td>1203 ± 35</td>
<td>43.4 ± 0.5</td>
<td>3.08 ± 0.10 ±0.14 -0.15</td>
</tr>
<tr>
<td>4.308</td>
<td>44.9</td>
<td>1.063</td>
<td>1.053</td>
<td>53 ± 8</td>
<td>46.0 ± 1.4</td>
<td>2.32 ± 0.33 ±0.15 -0.10</td>
</tr>
<tr>
<td>4.358</td>
<td>539.8</td>
<td>1.081</td>
<td>1.051</td>
<td>668 ± 26</td>
<td>44.7 ± 1.1</td>
<td>2.48 ± 0.11 ±0.13 -0.12</td>
</tr>
<tr>
<td>4.387</td>
<td>55.2</td>
<td>1.087</td>
<td>1.051</td>
<td>57 ± 8</td>
<td>47.5 ± 1.8</td>
<td>1.92 ± 0.26 ±0.10</td>
</tr>
<tr>
<td>4.416</td>
<td>1028.9</td>
<td>1.098</td>
<td>1.053</td>
<td>1133 ± 34</td>
<td>44.6 ± 0.6</td>
<td>2.16 ± 0.10 ±0.10 -0.11</td>
</tr>
<tr>
<td>4.600</td>
<td>566.9</td>
<td>1.124</td>
<td>1.055</td>
<td>474 ± 22</td>
<td>43.8 ± 0.8</td>
<td>1.63 ± 0.08 ±0.08</td>
</tr>
</tbody>
</table>

Cross-section measurement
\(\sigma_B(e^+e^- \rightarrow p\bar{p}\pi^0) \) between 4.0 – 4.6 GeV

- No significant resonant structure
 - Least square fit to cross-section:
 \[
 \sigma(s) = \left| \sqrt{\sigma_{\text{con}}} + \sqrt{\sigma_Y} \frac{m\Gamma}{s - m^2 + im\Gamma} \exp(i\phi) \right|^2
 \]
 - Continuum process: \(\sqrt{\sigma_{\text{con}}} \propto \frac{1}{s^n} \)
 - \(Y(4260) \) with \((m,\Gamma) \) from PDG
 - \(\phi = 3.4 \pm 1.0 \), \(\sigma_Y = (1.6 \pm 5.9) \times 10^{-3} \text{ pb} \) (0.5\(\sigma \))
 - No multiple solutions

- Obtained upper limit at 90% CL on
 \(e^+e^- \rightarrow Y(4260) \rightarrow p\bar{p}\pi^0 \)
 (most conservative) estimate:
 \(\Rightarrow \sigma < 0.01 \text{ pb} \)
Precision measurement of $\sigma_B(e^+e^- \to K_s K^{+/−}π^{−/+})$ between 3.8 – 4.6 GeV

- Based on 5.0 fb$^{-1}$ between 3.8 – 4.6 GeV → *energy-dependent Born cross-section*

- Dalitz plots for $e^+e^- \to K_s K^{+−}π^−$ at 4.23 GeV, real vs MC data generated from PWA result

- Various bands visible:
 - $K^*(892), K_2^*(1430) \to K^{+/−}π^{−/+}$ (*vertical*)
 - $K_2^*(1430)^{+−} \to K_s π^{−/+}$ (*horizontal*)
 - e.g. excited $ρ^{+/−}, a_2(1320)^{+−} \to K_s K^−$ (*diagonal*)

- PWA of $K_s K^{+−}π^−$ system at different E_{cms} (relativistic BWs, covariant helicity method)
 - determination of reconstruction efficiencies
Precision measurement of $\sigma_B(e^+e^- \rightarrow K_s K^{+/-}\pi^{-/+})$ between 3.8 – 4.6 GeV

- Amplitude fit result at 4.23 GeV \textit{(MC projections according to PWA result)}

- Inv. masses for $K^+\pi$, $K_s\pi$ and K_sK and polar angle distributions for π, K and K_s \textit{Good agreement to data}

Precision measurement of $\sigma_B(e^+e^- \rightarrow K_s K^{+/-}\pi^{-/+})$ between 3.8 – 4.6 GeV

- Energy dependent cross section of $e^+e^- \rightarrow K_s K^{+}\pi^{-}$
 - In agreement to BaBar but much higher precision

[BarBar: PRL 95 (2005) 142001]

Precision measurement of $\sigma_B(e^+e^- \to K_s K^{+/-}\pi^{/-/+})$ between 3.8 – 4.6 GeV

- Energy dependent cross section of $e^+e^- \to K_s K^+\pi^-$

 \rightarrow In agreement to BaBar but much higher precision

- Zoomed in BESIII data together with fit of continuum process only

 \rightarrow does not describe access at about 4.2 GeV

Precision measurement of $\sigma_B(e^+e^- \rightarrow K_s K^{+/−}\pi^{−/+})$ between 3.8 – 4.6 GeV

- Energy dependent cross section of $e^+e^- \rightarrow K_s K^+\pi^-$
 → In agreement to BaBar but much higher precision

- Zoomed in BESIII data together with fit of continuum process
 → and additional resonance, $\psi(4160)$ (left) or $Y(4220)$ (right)

Precision measurement of $\sigma_B(e^+e^- \rightarrow K_s K^{+/-}\pi^{-/+})$ between 3.8 – 4.6 GeV

- Energy dependent cross section of $e^+e^- \rightarrow K_s K^+\pi^-$
 → In agreement to BaBar but much higher precision

- Zoomed in BESIII data together with fit of continuum process
 → and additional resonance, $\psi(4160)$ (left) or $Y(4220)$ (right)

Precision measurement of \(\sigma_B(e^+e^- \rightarrow K_s K^{+/−}π^{−/+}) \) **between 3.8 – 4.6 GeV**

- Energy dependent cross section of \(e^+e^- \rightarrow K_s K^{+}π^- \)
 - In agreement to BaBar but much higher precision

- More energy points and larger statistics needed for deeper understanding of possible structures and cc-like states

- Zoomed in BESIII data together with fit of continuum process
 - and additional resonance, \(\psi(4160) \) (left) or \(Y(4220) \) (right)

Search for $Y(4260)$ and $Z_c(3900)$ in $e^+e^- \to K_s K \pi \pi^0$ and $K_s K \pi \eta$

- Based on 17 E_{cm} points, in the range of 3.8 – 4.6 GeV
- Invariant mass distributions $\pi\pi$ vs. $\gamma\gamma$ at $\sqrt{s} = 4.26$ GeV
 \Rightarrow clear K_s and π/η peaks
- Sidebands:
 \[N_{\text{sig}} = N_A - \sum N_B/2 + \sum N_C/4 \]

Search for $\text{Y}(4260)$ and $\text{Z}_c(3900)$ in $e^+e^- \rightarrow K_S K \pi \pi^0$ and $K_S K \pi \eta$

- Examples of invariant masses for 2- and 3-body final states, here at 4.26 GeV
 \rightarrow intermediate resonances
 such as $\rho(770)$ or $K^*(890)$

- MC shape of $\text{Z}_c(3900)$ as pink dash-dotted line, arbirtary scale

Search for $Y(4260)$ and $Z_c(3900)$ in $e^+e^- \rightarrow K_S K \pi \pi^0$ and $K_S K \pi \eta$

- Energy-dependent Born cross-sections:

$$\sigma_B = \frac{N_{\text{sig}}}{\mathcal{L} \cdot \mathcal{B} \cdot \epsilon \cdot (1 + \delta_{\text{ISR}}) \cdot \frac{1}{|1 - \Pi(s)|^2}}$$

- MC shape of $Y(4220)$ as pink dash-dotted line, arbitrary scale

- No clear structure observed, CL90 ULs
 - $\text{BR} \times \Gamma_{e^+e^-} < 0.05$ eV (π^0 mode)
 - $\text{BR} \times \Gamma_{e^+e^-} < 0.19$ eV (η mode)

- Comparing to $J/\psi \pi \pi$ ($1.5 - 13.3$ eV), much smaller possible couplings for decays to light hadrons

Search for $Y(4260)$ and $Z_c(3900)$ in $e^+e^- \rightarrow K_s K \pi \pi^0$ and $K_s K \pi \eta$

- Search for and upper limits on $Z_c(3900)$ production at 5 E_{cms}

- And ratios

\[R = \frac{\sigma_B(e^+e^- \rightarrow \pi Z_c(3900) \rightarrow \pi K^0_S K \pi/\eta)}{\sigma_B(e^+e^- \rightarrow \pi Z_c(3900) \rightarrow \pi \pi J/\psi)} \]

- No obvious signal observed in charged nor neutral mode

- Unbinned max. likelihood fit to $K_s K \pi \pi^0/\eta, 3.7 - 4.1$ GeV

- CL90 ULs provided at 5 E_{cms}

=> Cross section for decays to light hadrons small

Search for $Y(4260)$ and $Z_c(3900)$ in $e^+e^- \to K_s K \pi \pi^0$ and $K_s K \pi \eta$

- Search for and upper limits on $Z_c(3900)$ production at $5 \ E_{\text{cms}}$

- And ratios

$$R = \frac{\sigma_B(e^+e^- \to \pi Z_c(3900) \to \pi K_S^0 K \pi/\eta)}{\sigma_B(e^+e^- \to \pi Z_c(3900) \to \pi \pi J/\psi)}$$

- No obvious signal observed in charged nor neutral mode

- Unbinned max. likelihood fit to $K_s K \pi \pi^0/\eta$, 3.7 – 4.1 GeV

- CL90 ULs provided at 5 E_{cms}

$$\sqrt{s} \ (\text{GeV}) \quad \sigma_B \ (\text{pb}) \quad R$$

<table>
<thead>
<tr>
<th></th>
<th>4.226</th>
<th>< 0.24</th>
<th>< 2.5 \times 10^{-2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^+e^- \to \pi^0 Z_c(3900)^0$,</td>
<td>4.258</td>
<td>< 0.38</td>
<td>< 1.2 \times 10^{-1}</td>
</tr>
<tr>
<td>$Z_c(3900)^0 \to K_S^0 K^{\pm} \pi^\mp$</td>
<td>4.358</td>
<td>< 0.51</td>
<td>< 2.6 \times 10^{-1}</td>
</tr>
<tr>
<td>$Z_c(3900)^\pm \to K_S^0 K^{\mp} \pi^0$</td>
<td>4.416</td>
<td>< 0.27</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4.600</td>
<td>< 0.33</td>
<td>-</td>
</tr>
</tbody>
</table>

= $\frac{\sqrt{s}}{4.226} < 0.17 < 9.1 \times 10^{-3}$

$$\sqrt{s} \ (\text{GeV}) \quad \sigma_B \ (\text{pb})$$

<table>
<thead>
<tr>
<th></th>
<th>4.226</th>
<th>< 0.57</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^+e^- \to \pi^\pm Z_c(3900)^\mp$,</td>
<td>4.258</td>
<td>< 0.28</td>
<td>< 5.6 \times 10^{-2}</td>
</tr>
<tr>
<td>$Z_c(3900)^\pm \to K_S^0 K^{\mp} \pi^0$</td>
<td>4.358</td>
<td>< 0.57</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4.416</td>
<td>< 0.34</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4.600</td>
<td>< 0.45</td>
<td>-</td>
</tr>
</tbody>
</table>

$$\frac{\sqrt{s}}{4.226} < 0.18 < 1.0 \times 10^{-2}$$

$$\sqrt{s} \ (\text{GeV}) \quad \sigma_B \ (\text{pb})$$

<table>
<thead>
<tr>
<th></th>
<th>4.226</th>
<th>< 0.56</th>
<th>< 1.4 \times 10^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_c(3900)^+ \to K_S^0 K^{+} \eta$</td>
<td>4.358</td>
<td>< 0.53</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4.416</td>
<td>< 0.76</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4.600</td>
<td>< 0.58</td>
<td>-</td>
</tr>
</tbody>
</table>

Annihilation of $c\bar{c}$ quarks in $Y(4260)$ & $Z_c(3900)$ suppressed

Search for $Z_c(3900)$ in $e^+e^- \to \omega \pi^+ \pi^-$

- Invariant $\pi^+\pi^-\pi^0$ mass distribution for selected $\pi^+\pi^-\pi^+\pi^-\pi^0$ events at $\sqrt{s} = 4.23$ GeV
 \rightarrow clear \eta, \omega and \phi peaks

- Invariant $\omega\pi^\pm$ mass distribution at $\sqrt{s} = 4.23$ GeV
 - Data events in ω region
 - Events selected from sidebands
 - Inclusive MC events (blue) dominated by continuum

Search for $Z_c(3900)$ in $e^+e^- \to \omega \pi^\mp \pi^\mp$

- Unbinned, extended maximum likelihood fit to $\omega \pi^\pm$ system
 - Separately at $\sqrt{s} = 4.23$ and 4.26 GeV
 - Signal PDF parameterisation S-wave BW convolved with Gaussian
 - Background described by ARGUS function

- Results, Born cross sections and ULs:
 - $\sqrt{s} = 4.23$ GeV: 14 ± 11 events, 1.2σ
 - $\sqrt{s} = 4.26$ GeV: 2.2 ± 8.1 events, 0.1σ
 - CL90 upper limits, Bayesian method:
 - 33.5 and 18.8 events
 - ULs: $\sigma_B < 0.26$ and 0.18 pb

\[
\sigma(e^+e^- \to Z_c(3900)^\pm \pi^\mp, Z_c(3900)^\pm \to \omega \pi^\pm) = \frac{N^{UL}}{L_{\text{int}} (1 + \delta) \frac{1}{|1 - \Pi|^2} \epsilon (1 - \sigma_\epsilon) B_\omega B_{\pi^0}}
\]

Search for $Z_c(3900)$ in $e^+e^- \rightarrow \omega \pi^\pm \pi^-$

- Unbinned, extended maximum likelihood fit to $\omega \pi^\pm$ system
 - Separately at $\sqrt{s} = 4.23$ and 4.26 GeV
 - Signal PDF parameterisation S-wave BW convolved with Gaussian
 - Background described by ARGUS function

- Results, Born cross sections and ULs:
 - $\sqrt{s} = 4.23$ GeV: 14 ± 11 events, 1.2σ
 - $\sqrt{s} = 4.26$ GeV: 2.2 ± 8.1 events, 0.1σ
 - CL90 upper limits, Bayesian method: 33.5 and 18.8 events
 - ULs: $\sigma_B < 0.26$ and 0.18 pb

Non-observation of $Z_c(3900) \rightarrow \omega \pi^\pm$

-> typical decay channel for a 1^+ resonance, indicates $c\bar{c}$ annihilation in $Z_c(3900)$ suppressed

$\sigma(e^+e^- \rightarrow Z_c(3900) \pi^\mp, Z_c(3900) \rightarrow \omega \pi^\pm) = \frac{N^{UL}}{L_{int}(1+\delta)\frac{1}{|1-\Pi|^2} \epsilon(1-\sigma_e)B_\omega B_{\pi^0}}$

Summary & outlook

• BESIII major contributions to XYZ puzzle
 ➢ Charmless decays predicted for various nature interpretations for both, \(Y(4260) \) and \(Z_c(3900) \)
 ➢ Several possible decay channels for light hadrons checked
 => No obvious signals observed

• Annihilation of \(c\bar{c} \) quarks in \(Y(4260) \) & \(Z_c(3900) \) seems to be heavily suppressed

<table>
<thead>
<tr>
<th>Decay Channel</th>
<th>(Y(4260))</th>
<th>(Z_c(3900))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p\bar{p}\pi^0)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(K_sK\pi</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(K_sK(\pi)\pi^0</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(K_sK(\pi)\eta</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\omega\pi</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>(p\bar{n}K_sK</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Outlook:

• More precision (energy scan) data around \(Y(4220) \) and further vector states needed (4.1 – 4.4 GeV)
Summary & outlook

• BESIII major contributions to XYZ puzzle
 ➢ Charmless decays predicted for various nature interpretations for both, Y(4260) and Z_{c}(3900)
 ➢ Several possible decay channels for light hadrons checked
 => No obvious signals observed

• Annihilation of c\bar{c} quarks in Y(4260) & Z_{c}(3900) seems to be heavily suppressed

Outlook:

• More precision (energy scan) data around Y(4220) and further vector states needed (4.1 – 4.4 GeV)
Summary & outlook

• BESIII major contributions to XYZ puzzle
 ➢ Charmless decays predicted for various nature interpretations for both, Y(4260) and Z_c(3900)
 ➢ Several possible decay channels for light hadrons checked
 => No obvious signals observed

• Annihilation of c\bar{c} quarks in Y(4260) & Z_c(3900) seems to be heavily suppressed

Outlook:

• More precision (energy scan) data around Y(4220) and further vector states needed (4.1 – 4.4 GeV)

Stay tuned for more BESIII results, helping to solve the XYZ puzzle ... !
The BESIII Collaboration

14 countries
67 institutions
~500 members
First measurement of $e^+e^- \rightarrow pK^-\bar{n}K$ above open charm threshold

The process $e^+e^- \rightarrow pK^0_S\bar{n}K^- + c.c.$ and its intermediate processes are studied for the first time, using data samples collected with the BESIII detector at BEPCII at center-of-mass energies of 3.773, 4.008, 4.226, 4.258, 4.358, 4.416, and 4.600 GeV, with a total integrated luminosity of 7.4 fb$^{-1}$. The Born cross section of $e^+e^- \rightarrow pK^0_S\bar{n}K^- + c.c.$ is measured at each center-of-mass energy, but no significant resonant structure in the measured cross-section line shape between 3.773 and 4.600 GeV is observed. No evident structure is detected in the $pK^-, nK^0_S, pK^0_S, nK^+, p\bar{n}$, or $K^0_S\bar{K}^-$ invariant mass distributions except for $\Lambda(1520)$. The Born cross sections of $e^+e^- \rightarrow \Lambda(1520)\bar{n}K^0_S + c.c.$ and $e^+e^- \rightarrow \Lambda(1520)pK^+ + c.c.$ are measured, and the 90% confidence level upper limits on the Born cross sections of $e^+e^- \rightarrow \Lambda(1520)\bar{\Lambda}(1520)$ are determined at the seven center-of-mass energies. There is an evident difference in line shape and magnitude of the measured cross sections between $e^+e^- \rightarrow \Lambda(1520)(\rightarrow pK^-)\bar{n}K^0_S$ and $e^+e^- \rightarrow pK^-\bar{\Lambda}(1520)(\rightarrow \bar{n}K^0_S)$.