



# Searches for charmonium-like (exotic) XYZ states decaying to light hadrons at BESIII

#### **Frank Nerling** *GU Frankfurt, GSI Darmstadt* **on behalf of the BESIII Collaboration**

#### *QWG 2019 May 13<sup>th</sup>* - *17<sup>th</sup> 2019, Torino, Italy*

#### **Outline**

Introduction & motivation

#### Searches for charmless decays

- Searches for Y(4260) via cross-section line-shapes
- > Searches for  $Z_c(3900)$  decays to light hadrons
- Summary

Frank Nerling



### Famous exotic (?) XYZ states



BESI



### **Motivation**



- Series of unexpected vector charmonium-like states
  - > (mainly) observed in decays associated with charmonia
- *R*-value at 4.0 4.6 GeV is about ~ 4 => total cross-section 16 nb





### **Motivation**



- Series of unexpected vector charmonium-like states
  - > (mainly) observed in decays associated with charmonia
- R-value at 4.0 4.6 GeV is about ~ 4 => total cross-section 16 nb
  - > Open charm: 10 nb => The other 6 nb only charmonium transition?



















Frank Nerling

#### SII Cross-section measurement $\sigma_{B}(e^{+}e^{-} \rightarrow p\overline{p}\pi^{0})$ between 4.0 – 4.6 GeV



- Two solutions of same probability
   a) 33.8 ± 1.8 ± 2.1 pb, and
   b) < 0.22 pb at 90% CL</li>
- Both fit solutions consistent with destructive interference (270°)

- Cross-section  $p\bar{p} \rightarrow \psi(3770)\pi^0$ 
  - Using constant decay amplitude approximation: 122 ± 10 nb, and
     < 0.79 nb at 90% CL at 5.26 GeV (PANDA)</li>





### **EXAMPLES 1** Cross-section measurement $\sigma_{\rm B}(e^+e^- \rightarrow p\overline{p}\pi^0)$ between 4.0 – 4.6 GeV



- PWA to correctly determine detection efficiencies
  - Dalitz plot at 4.26 GeV
  - MC data generated from PWA result vs. real data
- Multi intermediate baryons: > N\*,  $\Delta^* \rightarrow p\overline{p}\pi^0, p\pi^0, \overline{p}\pi^0$ >  $\rho^*, \omega^* \rightarrow p\overline{p}$
- Partial wave analysis:
  - Covariant tensor formalism

[J. Phys. G28,233]

- Breit-Wigner param. of
   ρ\*N\*, Δ\* [RPD80,052004]
- > Direct process  $e^+e^- \rightarrow p\overline{p}\pi^0$ : 1<sup>--</sup> or 3<sup>--</sup>  $p\overline{p}$  system
- Resonance >  $5\sigma$  are retained



Frank Nerling

Searches for XYZ decaying to light hadrons at BESIII, pg. 8

### **EXAMPLE 1** Cross-section measurement $\sigma_{\rm B}(e^+e^- \rightarrow p\overline{p}\pi^0)$ between 4.0 – 4.6 GeV



- PWA to correctly determine detection efficiencies
  - Dalitz plot at 4.26 GeV
  - MC data generated from PWA result vs. real data
- Multi intermediate baryons: > N\*,  $\Delta^* \rightarrow p\overline{p}\pi^0, p\pi^0, \overline{p}\pi^0$ >  $\rho^*, \omega^* \rightarrow p\overline{p}$
- Partial wave analysis:
  - Covariant tensor formalism

[J. Phys. G28,233]

- > Breit-Wigner param. of  $\rho^*N^*, \Delta^*$  [RPD80,052004]
- > Direct process  $e^+e^- \rightarrow p\overline{p}\pi^0$ : 1<sup>--</sup> or 3<sup>--</sup>  $p\overline{p}$  system
- Resonance >  $5\sigma$  are retained



Searches for XYZ decaying to light hadrons at BESIII, pg. 9

#### ₿€SШ **Cross-section measurement** $\sigma_{\rm B}(e^+e^- \rightarrow p\overline{p}\pi^0)$ between 4.0 – 4.6 GeV



- Born cross section: ۲
  - Born cross section: > radiative correction factor  $(1 + \delta^r)$   $\sigma^B = \frac{N^{\text{obs}}}{\mathcal{L} \cdot (1 + \delta^r) \cdot (1 + \delta^v) \cdot \epsilon \cdot \mathcal{B}_{\pi^0}}$

> vacuum polarisation factor 
$$(1 + \delta^v)$$

[Phys. Lett. B771 (2017) 45]

Frank Nerling

Searches for XYZ decaying to light hadrons at BESIII, pg. 10

### **EXAMPLE 1** Cross-section measurement $\sigma_{\rm B}(e^+e^- \rightarrow p\overline{p}\pi^0)$ between 4.0 – 4.6 GeV



- No significant resonant structure
  - $\succ$  Least square fit to cross-section:
  - > Continuum process:  $\sqrt{\sigma_{\rm con}} \propto \frac{1}{s^n}$
  - > Y(4260) with  $(m,\Gamma)$  from PDG

$$\Rightarrow \phi = 3.4 \pm 1.0$$
,  $\sigma_{\rm Y} = (1.6 \pm 5.9) \times 10^{-3} \, {\rm pb}$  (0.5 $\sigma$ )

No multiple solutions

• Obtained upper limit at 90% CL on  $e^+e^- \rightarrow Y(4260) \rightarrow p\bar{p}\pi^0$ (most conservative) estimate: =>  $\sigma < 0.01$  pb



 $\sigma(s) = \left| \sqrt{\sigma_{\rm con}} + \sqrt{\sigma_Y} \frac{m\Gamma}{s - m^2 + im\Gamma} \exp(i\phi) \right|^2$ 

Searches for XYZ decaying to light hadrons at BESIII, pg. 11

# $\begin{array}{ccc} & & & & & & & \\ \hline & & & & \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$

- Based on 5.0 fb<sup>-1</sup> between 3.8 4.6 GeV
   → energy-dependent Born cross-section
- Dalitz plots for e<sup>+</sup>e<sup>-</sup> → K<sub>s</sub>K<sup>+</sup>π<sup>-</sup> at 4.23 GeV, real vs MC data generated from PWA result
- Various bands visible:
  - $\succ$  K<sup>\*</sup>(892), K<sup>\*</sup><sub>2</sub>(1430) → K<sup>+/−</sup>π<sup>−/+</sup> (vertical)
  - $\succ$  K<sub>2</sub><sup>\*</sup>(1430)<sup>+/-</sup>  $\rightarrow$  K<sub>s</sub> $\pi^{-/+}$  (horizontal)
  - ▶ e.g. excited ρ<sup>+/-\*</sup>, a<sub>2</sub>(1320)<sup>+/-</sup> → K<sub>s</sub>K<sup>-</sup>(diagonal)
- PWA of K<sub>s</sub>K<sup>+</sup>π<sup>-</sup> system at different E<sub>cms</sub> (relativistic BWs, covariant helicity method)
  - determination of reconstruction efficiencies





• Amplitude fit result at 4.23 GeV (MC projections according to PWA result)



• Inv. masses for  $K^+\pi^{,}K_s\pi$  and  $K_sK$  and polar angle distributions for  $\pi$ , K and  $K_s$ 

ightarrow Good agreement to data

[Phys. Rev. D99 (2019) 072005]

Frank Nerling

Searches for XYZ decaying to light hadrons at BESIII, pg. 13

## $\begin{array}{c} \underset{\sigma_{B}}{\overset{\text{Precision measurement of}}{\overset{\text{Precision measurement of}}} \\ \sigma_{B}(e^{+}e^{-} \rightarrow K_{s}K^{+/-}\pi^{-/+}) \text{ between 3.8 - 4.6 GeV} \end{array}$

- Energy dependent cross section of  $e^+e^- \rightarrow K_s K^+\pi^-$ 
  - $\rightarrow$  In agreement to BaBar but much higher precision



[BarBar: PRL 95 (2005) 142001]

[Phys. Rev. D99 (2019) 072005]

Frank Nerling

Searches for XYZ decaying to light hadrons at BESIII, pg. 14

# $\begin{array}{c} \underset{\sigma_{B}}{\overset{\bullet}} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\bullet}} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\bullet}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\bullet}} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}$ \\ \begin{array}{c} \underset{\sigma\_{B}}{\overset{\sigma\_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma\_{B}}{\overset{\sigma\_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma\_{B}}{\overset{\sigma\_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma\_{B}}{\overset{\sigma\_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma\_{B}}{\overset{\sigma\_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma}{\end{array}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma}{\end{array}} \end{array} \\ \begin{array}{c} \underset{\sigma}{} \underset{\sigma}{}} \\ \end{array} \\ \bigg \\ \end{array} \\ \end{array} \\ \bigg \\ \end{array} \\ \end{array} \\ \end{array} \\ \bigg \\ \bigg \\ \bigg \\

• Energy dependent cross section of  $e^+e^- \rightarrow K_s K^+\pi^-$ 

→ In agreement to BaBar but much higher precision



• Zoomed in BESIII data together with fit of continuum process only

→ does not describe access at about 4.2 GeV

[Phys. Rev. D99 (2019) 072005]

Frank Nerling

Searches for XYZ decaying to light hadrons at BESIII, pg. 15

## $\begin{array}{c} \underset{\sigma_{B}}{\overset{\bullet}} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\bullet}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\bullet}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\bullet}} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}$ \\ \begin{array}{c} \underset{\sigma\_{B}}{\overset{\sigma\_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma\_{B}}{\overset{\sigma\_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma\_{B}}{\overset{\sigma\_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma\_{B}}{\overset{\sigma\_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma}{\end{array}} \end{array} \\ \begin{array}{c} \underset{\sigma}{} \underset{\sigma}{} \end{array} \\ \bigg \\ \end{array} \\ \bigg \\ \end{array} \\ \bigg \\

- Energy dependent cross section of  $e^+e^- \rightarrow K_s K^+\pi^-$ 
  - → In agreement to BaBar but much higher precision



- Zoomed in BESIII data together with fit of continuum process
  - $\rightarrow$  and additional resonance,  $\psi(4160)$  (left) or Y(4220) (right)

[Phys. Rev. D99 (2019) 072005]

# $\begin{array}{c} \underset{\sigma_{B}}{\overset{\bullet}} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\bullet}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\bullet}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\bullet}} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}$ \\ \begin{array}{c} \underset{\sigma\_{B}}{\overset{\sigma\_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma\_{B}}{\overset{\sigma\_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma\_{B}}{\overset{\sigma\_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma\_{B}}{\overset{\sigma\_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma\_{B}}{\overset{\sigma\_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma}{} \underset{\sigma\_{B}}{\overset{\sigma\_{B}}} \end{array} \\ \bigg \\ \bigg \\ \end{array} \\ \bigg \\ \bigg

- Energy dependent cross section of  $e^+e^- \rightarrow K_s K^+\pi^-$ 
  - → In agreement to BaBar but much higher precision



- Zoomed in BESIII data together with fit of continuum process
  - $\rightarrow$  and additional resonance,  $\psi(4160)$  (left) or Y(4220) (right)

[Phys. Rev. D99 (2019) 072005]

Frank Nerling

Searches for XYZ decaying to light hadrons at BESIII, pg. 17

# $\begin{array}{c} \underset{\sigma_{B}}{\overset{\bullet}} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\bullet}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\bullet}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\bullet}} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{\sigma_{B}}{\overset{\sigma_{B}}} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}$ \\ \begin{array}{c} \underset{\sigma\_{B}}{\overset{\sigma\_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma\_{B}}{\overset{\sigma\_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma}{\overset{\sigma\_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma}{\overset{\sigma\_{B}}} \end{array} \\ \begin{array}{c} \underset{\sigma}{\end{array} \end{array} \\ \bigg \\ \bigg \\ \end{array} \\ \bigg \\

- Energy dependent cross section of  $e^+e^- \rightarrow K_s K^+\pi^-$ 
  - → In agreement to BaBar but much higher precision



- Zoomed in BESIII data together with fit of continuum process
  - $\rightarrow$  and additional resonance,  $\psi(4160)$  (left) or Y(4220) (right)

[Phys. Rev. D99 (2019) 072005]

Frank Nerling

Searches for XYZ decaying to light hadrons at BESIII, pg. 18



# Search for Y(4260) and Z<sub>c</sub>(3900) in $e^+e^- \rightarrow K_s K \pi \pi^0$ and $K_s K \pi \eta$



- Based on 17  $E_{cms}$  points, in the range of 3.8 4.6 GeV
- Invariant mass distributions  $\pi\pi$  vs.  $\gamma\gamma$ at  $\sqrt{s} = 4.26 \text{ GeV}$ 
  - ightarrow clear K $_{s}$  and  $\pi/\eta$  peaks
- Sidebands:

$$N_{\rm sig} = N_{\rm A} - \sum N_{\rm B}/2 + \sum N_{\rm C}/4$$



0.6

0.5

 $M(\gamma\gamma)(GeV/c^2)$ 

[Phys. Rev. D99 (2019) 012003]

Frank Nerling

Searches for XYZ decaying to light hadrons at BESIII, pg. 19

### Search for Y(4260) and Z<sub>c</sub>(3900) in $e^+e^- \rightarrow K_s K \pi \pi^0$ and $K_s K \pi \eta$



 Examples of invariant masses for 2- and 3-body final states, here at 4.26 GeV
 → intermediate resonances

such as  $\rho(770)$  or  $K^*(890)$ 

 MC shape of Z<sub>c</sub>(3900) as pink dash-dotted line, arbritary scale



[Phys. Rev. D99 (2019) 012003]

Frank Nerling

B€SⅢ



### Search for Y(4260) and Z<sub>c</sub>(3900) in e<sup>+</sup>e<sup>-</sup> $\rightarrow$ K<sub>s</sub>K $\pi$ $\pi^0$ and K<sub>s</sub>K $\pi$ $\eta$

• Energy-dependent Born cross-sections:

$$\sigma_{\rm B} = \frac{N_{\rm sig}}{\mathcal{L} \cdot \mathcal{B} \cdot \epsilon \cdot (1 + \delta^{\rm ISR}) \cdot \frac{1}{|1 - \Pi(s)|^2}}$$

- MC shape of Y(4220) as pink dashdotted line, arbritary scale
- No clear structure observed, CL90 ULs
   > BR x Γ<sub>e+e-</sub> < 0.05 eV (π<sup>0</sup>mode)
   > BR x Γ<sub>e+e-</sub> < 0.19 eV (η mode)</li>
- Comparing to J/ψππ (1.5 13.3 eV), much smaller possible couplings for decays to light hadrons



[Phys. Rev. D99 (2019) 012003]

### Search for Y(4260) and Z<sub>c</sub>(3900) in $e^+e^- \rightarrow K_s K \pi \pi^0$ and $K_s K \pi \eta$



• Search for and upper limits on  $Z_c(3900)$  production at 5  $E_{cms}$ 

• And ratios 
$$R = \frac{\sigma_B(e^+e^- \to \pi Z_c(3900) \to \pi K_S^0 K \pi / \eta)}{\sigma_B(e^+e^- \to \pi Z_c(3900) \to \pi \pi J / \psi)}$$

- No obvious signal observed in charged nor neutral mode
- Unbinned max. likelihood fit to  $K_s K \pi \pi^0 / \eta$ , 3.7 4.1 GeV
- CL90 ULs provided at 5 E<sub>cms</sub>
- => Cross section for decays to light hadrons small

[Phys. Rev. D99 (2019) 012003]

Frank Nerling

Searches for XYZ decaying to light hadrons at BESIII, pg. 22

|                                                | $\sqrt{s} \; (\text{GeV})$ | $\sigma_{\rm B}~({\rm pb})$ | R                      |
|------------------------------------------------|----------------------------|-----------------------------|------------------------|
|                                                | 4.226                      | < 0.24                      | $< 2.5 \times 10^{-2}$ |
| $e^+e^- \to \pi^0 Z_c(3900)^0,$                | 4.258                      | < 0.38                      | $< 1.2 \times 10^{-1}$ |
| $Z (3000)^0 \rightarrow K^0 K^{\pm} \pi^{\mp}$ | 4.358                      | < 0.51                      | $< 2.6 \times 10^{-1}$ |
| $Z_c(3900) \rightarrow K_S K \pi^*$            | 4.416                      | < 0.27                      | -                      |
|                                                | 4.600                      | < 0.33                      | -                      |
|                                                | 4.226                      | < 0.17                      | $< 9.1 \times 10^{-3}$ |
| $e^+e^- \to \pi^\pm Z_c(3900)^\mp,$            | 4.258                      | < 0.28                      | $< 5.6 \times 10^{-2}$ |
| $Z(3000)^{\mp} \rightarrow K^0 K^{\mp} \pi^0$  | 4.358                      | < 0.57                      | -                      |
| $Z_c(3900)^+ \rightarrow K_S K^+ \pi$          | 4.416                      | < 0.34                      | -                      |
|                                                | 4.600                      | < 0.45                      | -                      |
|                                                | 4.226                      | < 0.18                      | $< 1.0 \times 10^{-2}$ |
| $e^+e^- \to \pi^\pm Z_c(3900)^\mp,$            | 4.258                      | < 0.56                      | $< 1.4 \times 10^{-1}$ |
| $Z_c(3900)^{\mp} \to K^0_S K^{\mp} \eta$       | 4.358                      | < 0.53                      | -                      |
|                                                | 4.416                      | < 0.76                      | -                      |
|                                                | 4.600                      | < 0.58                      | -                      |

### Search for Y(4260) and Z<sub>c</sub>(3900) in $e^+e^- \rightarrow K_s K \pi \pi^0$ and $K_s K \pi \eta$



• Search for and upper limits on  $Z_c(3900)$  production at 5  $E_{cms}$ 

• And ratios 
$$R = \frac{\sigma_B(e^+e^- \to \pi Z_c(3900) \to \pi K_S^0 K \pi / \eta)}{\sigma_B(e^+e^- \to \pi Z_c(3900) \to \pi \pi J / \psi)}$$

| No obvious signal abaseved                       |                                               |                            |                             |                        |
|--------------------------------------------------|-----------------------------------------------|----------------------------|-----------------------------|------------------------|
| No obvious signal observed                       |                                               | $\sqrt{s} \; (\text{GeV})$ | $\sigma_{\rm B}~({\rm pb})$ | $\mathbf{R}$           |
| in charged nor neutral mode                      |                                               | 4.226                      | < 0.24                      | $< 2.5 \times 10^{-2}$ |
| 5                                                | $e^+e^- \to \pi^0 Z_c(3900)^0$ ,              | 4.258                      | < 0.38                      | $< 1.2 \times 10^{-1}$ |
|                                                  | $Z(2000)^0 \rightarrow K^0 K^{\pm} \pi^{\mp}$ | 4.358                      | < 0.51                      | $< 2.6 \times 10^{-1}$ |
| <ul> <li>Unbinned max. likelihood fit</li> </ul> | $Z_c(3900) \rightarrow K_S K \pi^+$           | 4.416                      | < 0.27                      | -                      |
| to K K $\pi \pi^0/n$ 37 – 41 GeV                 |                                               | 4.600                      | < 0.33                      | -                      |
| $10 R_{s} R \pi \pi / 11, 5.7 = 4.1 \text{ GeV}$ |                                               | 4.226                      | < 0.17                      | $<9.1\times10^{-3}$    |
|                                                  | $e^+e^- \to \pi^{\pm} Z_c(3900)^{\mp},$       | 4.258                      | < 0.28                      | $< 5.6 \times 10^{-2}$ |
| • CL90 ULs provided at 5 $\rm E_{cms}$           | $Z(2000)^{\pm} \rightarrow K^0 K^{\pm} \pi^0$ | 4.358                      | < 0.57                      | -                      |
|                                                  | $Z_c(3900)^+ \rightarrow K_S K^+ \pi$         | 4.416                      | < 0.34                      | -                      |
|                                                  |                                               | 4.600                      | < 0.45                      | -                      |
|                                                  | rks in                                        | 4.226                      | < 0.18                      | $< 1.0 \times 10^{-2}$ |
| -> C. Annihilation of CC quu                     | $(3900)^{\mp},$                               | 4.258                      | < 0.56                      | $< 1.4 \times 10^{-1}$ |
| => (1 41111111111111111111111111111111111        | (Uppressed)                                   | 4.358                      | < 0.53                      | -                      |
| ligi <b>Y(4200) &amp; 2</b> 20                   | $Z_c(3900)^+ \rightarrow K_S K^+ \eta$        | 4.416                      | < 0.76                      | -                      |
|                                                  |                                               | 4.600                      | < 0.58                      | -                      |
| Phys Rev D99 (2019) 0120031                      |                                               |                            |                             |                        |

Frank Nerling

Searches for XYZ decaying to light hadrons at BESIII, pg. 23

## Search for $Z_c(3900)$ in $e^+e^- \rightarrow \omega \pi^+ \pi^-$



 Invariant π<sup>+</sup>π<sup>-</sup>π<sup>0</sup> mass distribution for selected π<sup>+</sup>π<sup>-</sup>π<sup>+</sup>π<sup>-</sup>π<sup>0</sup> events at √s = 4.23 GeV

 $\rightarrow$  clear  $\eta, \omega$  and  $\phi$  peaks

- Invariant ωπ<sup>±</sup> mass distribution at √s = 4.23 GeV
  - > Data events in  $\omega$  region
  - Events selected from sidebads
  - Inclusive MC events (blue) dominated by continuum



[Phys. Rev. D 92 (2015) 032009]

### Search for $Z_c(3900)$ in $e^+e^- \rightarrow \omega \pi^+ \pi^-$



- > Separately at  $\sqrt{s}$  = 4.23 and 4.26 GeV
- Signal PDF parameterisation S-wave BW convolved with Gaussian
- Background described by ARGUS function
- Results, Born cross sections and ULs:

- CL90 upper limits, Bayesian method:
   33.5 and 18.8 events
- > ULs:  $\sigma_B < 0.26$  and 0.18 pb

$$\sigma(e^+e^- \to Z_c(3900)^{\pm}\pi^{\mp}, Z_c(3900)^{\pm} \to \omega\pi^{\pm}) = \frac{N^{\mathrm{UL}}}{\mathcal{L}_{\mathrm{int}}(1+\delta)\frac{1}{|1-\Pi|^2}\epsilon(1-\sigma_{\epsilon})\mathcal{B}_{\omega}\mathcal{B}_{\pi^0}}$$

[Phys. Rev. D 92 (2015) 032009]

Frank Nerling





## Search for $Z_c(3900)$ in $e^+e^- \rightarrow \omega \pi^+\pi^-$





[Phys. Rev. D 92 (2015) 032009]

Frank Nerling

Searches for XYZ decaying to light hadrons at BESIII, pg. 26



### Summary & outlook



- BESIII major contributions to XYZ puzzle
  - Charmless decays predicted for various nature interpretations for both, Y(4260) and Z<sub>c</sub>(3900)
  - Several possible decay channels for light hadrons checked
  - => No obvious signals observed
- Annihilation of cc quarks in Y(4260) & Z<sub>c</sub>(3900) seems to be heavily suppressed

|                         | Y(4260)      | Z <sub>c</sub> (3900) |
|-------------------------|--------------|-----------------------|
| $p\overline{p} \ \pi^0$ | $\checkmark$ |                       |
| $K_s K \pi$             | $\checkmark$ |                       |
| $K_{s}K(\pi)\pi^{0}$    | $\checkmark$ | $\checkmark$          |
| $K_{s}K(\pi)\eta$       | $\checkmark$ | $\checkmark$          |
| ωπ                      |              | $\checkmark$          |
| p n K <sub>s</sub> K    | $\checkmark$ | $\checkmark$          |

#### **Outlook:**

 More precision (energy scan) data around Y(4220) and further vector states needed (4.1 – 4.4 GeV)



### Summary & outlook



- BESIII major contributions to XYZ puzzle
  - Charmless decays predicted for various nature interpretations for both, Y(4260) and Z<sub>c</sub>(3900)
  - Several possible decay channels for light hadrons checked
  - => No obvious signals observed
- Annihilation of cc quarks in Y(4260) & Z<sub>c</sub>(3900) seems to be heavily suppressed



#### **Outlook:**

 More precision (energy scan) data around Y(4220) and further vector states needed (4.1 – 4.4 GeV)

Frank Nerling



### Summary & outlook



- BESIII major contributions to XYZ puzzle
  - Charmless decays predicted for various nature interpretations for both, Y(4260) and Z<sub>c</sub>(3900)
  - Several possible decay channels for light hadrons checked
  - => No obvious signals observed

 $e^+e^- \rightarrow J/\psi \pi^+\pi^-$  at BESIII (direct)





### **The BESIII Collaboration**





Searches for XYZ decaying to light hadrons at BESIII, pg. 30

### **First measurement of e^+e^- \rightarrow pK\_s \overline{n}K** above open charm threshold



The process  $e^+e^- \to pK_S^0\bar{n}K^- + c.c.$  and its intermediate processes are studied for the first time, using data samples collected with the BESIII detector at BEPCII at center-of-mass energies of 3.773, 4.008, 4.226, 4.258, 4.358, 4.416, and 4.600 GeV, with a total integrated luminosity of 7.4 fb<sup>-1</sup>. The Born cross section of  $e^+e^- \to pK_S^0\bar{n}K^- + c.c.$  is measured at each center-of-mass energy, but no significant resonant structure in the measured cross-section line shape between 3.773 and 4.600 GeV is observed. No evident structure is detected in the  $pK^-$ ,  $nK_S^0$ ,  $pK_S^0$ ,  $nK^+$ ,  $p\bar{n}$ , or  $K_S^0K^-$  invariant mass distributions except for  $\Lambda(1520)$ . The Born cross sections of  $e^+e^- \to \Lambda(1520)\bar{n}K_S^0 + c.c.$ and  $e^+e^- \to \Lambda(1520)\bar{p}K^+ + c.c.$  are measured, and the 90% confidence level upper limits on the Born cross sections of  $e^+e^- \to \Lambda(1520)\bar{\Lambda}(1520)$  are determined at the seven center-of-mass energies. There is an evident difference in line shape and magnitude of the measured cross sections between  $e^+e^- \to \Lambda(1520)(\to pK^-)\bar{n}K_S^0$  and  $e^+e^- \to pK^-\bar{\Lambda}(1520)(\to \bar{n}K_S^0)$ .

