Absolute branching fractions of exclusive two-body decays B⁺→K⁺ + Charmonium

Guy Wormser

LAL Orsay IN2P3/CNRS and Paris-Saclay University

On behalf of BABAR collaboration

- Test of QCD: « democratic » prediction for BR(B→K Charmonium) except:
 - factorization suppression for the χ_0 state, M. Diehl, G. Hiller, JHEP 0106:067,2001, hep-ph/0105194
 - No J=2 weak current leads to χ_2 suppression
- Informations upon classical charmonium
 - Determination of the absolute BR provides access to absolute BR for all X decays, as in the η_{c} case
 - Mass and widths of not-so-well-measured particles such $\eta_c(2S)$

Main physics motivation

- Information upon new charmonium states, especially X(3872)
 - Both the production rate BR(B[±] \rightarrow K[±]X(3872) and the absolute decay rate BR(X(3872) \rightarrow J/ $\psi\pi$ ⁺ π ⁻) will give key information on the complex nature of this particle
- Access to other X,Y,Z particles is difficult with this method is difficult because of their large width
- A search can however be made for a charged companion of the X(3872) in rate BR(B⁰→K[±]X[∓])

The K[±] momentum spectrum method

- B-factories can take advantage to the Y(4S) decay to B⁺B⁻
- Full exclusive reconstruction of one B provides the precise knowledge of the boost to the center-of-mass of the other B
- In this frame, each exclusive two-body B[±] → K[±]X corresponds to a monochromatic peak in the Kaon momentum spectrum
- Since the recoiling system is most often composed of a cc pair, it provides an unbiased « hydrogen atom-like » spectroscopy of the charmonium system
- This method was pionneered by BABAR in 2006 with 210 fb⁻¹

Phys. Rev. Letters 96 052002 (2006)

• Belle published their results in 2018, based on the same method.

Phys. Rev. D 97, 012005 (2018)

The analysis workflow-I : B-reco and event selection

- 1 Fully reconstruct as many B as possible
 - Typical efficiency of a few per mill when adding many many modes of the form $Dn\pi(\pi^{\circ})$, DD_s , $J/\psi Kn\pi(\pi^{\circ})$, where many modes are used for D reco.
 - In Babar, several thousand modes are considered, ranked by their signal-tonoise, the so-called « purity »
 - Illustrations
- 2- B candidate selection when there is more than 1 candidate per event (happens quite often when trying to use all these modes)
- Event selection –Rejection against udsc events (small contribution from B° as well)

The M_{ES} spectrum with the various components from simulation

G. Wormser, QWG 2019, Torino May 2019

6

Separation from udsc

A neural net NN is used with the usual variables linked to the sphericity of BB events compared to the jet-like shape of udsc events

The analysis workflow -II

- Find a Kaon candidate in the tracks not used to reconstructed the B candidate
 - Stringent PID cuts
 - K charge opposite to the reco-B charge
- Discriminate between two-body primary Kaons and the secondary kaons from B decays : This is the largest background (true kaons from true B decays
- Plot the Kaon momentum in the B-reco center of mass (or the missing mass)

The Kaon purity

The Kaon purity is extremely good in these momenta range thanks to the DIRC

(1.5 GeV in the B rest frame corresponds to about 2.5 GeV in the lab c.m)

Primary-secondary Kaon Separation

The event shape can give a (modest but useful) discrimination between primary and secondary kaons

G. Wormser, QWG 2019, Torino May 2019

TMVA response for classifier: MLP

Background

0.2

Signal

÷

/NP (N/L)

2.5

1.5

0.5

-0.2

1.2

MLP response

0.6

0.8

The issues with past workflow

- The best B candidate is selected before looking for Kaons : it can happen that the signal side B is the best candidate ->the event is lost Spurious interplay between tag and signal sides
- The best B candidate could be the wrong one : The kaon momentum is computed with the wrong boost, the signal is severely degraded
- One common solution : take all combinations: increased efficiency!!
 - For the X(3872) the efficiency gain is up to a factor 3.

Number of candidates per event

Mean value of candidates per event is still reasonable : 1.35

The expected signal shape

- For each (charmonium) resonance, the signal shape is the sum of the components:
 - A narrow gaussian due to a good signal kaon associated with a perfect B-reco tag (ie correct boost)
 - A wide component due to a good signal kaon associated with an imperfect Breco tag although they have a correct B mass (ie events under the mass signal peak)
- The narrow gaussian width is dominated by the Kaon momentum resolution in the lab, ie decreases when the resonance mass increases
- The wide component width and fraction has (unfortunately) a small dependance upon the resonance decay channels

The B shape depends of the recoiling particle

∧1 MeV 600 500 Blue: J/ψ region 400 Red: X(3872) 300 The blue area leads 200 to candidates described with the 100 wide gaussian. 5.24 5.26 5.25 5.27 5.29 5.28 5.3 B mass (GeV)

Description of the signal shape in the J/ ψ - η_c region (MC)

MC simulation : Primary Kaons from two-body decays

The X(3872) signal shape

The background shape

- As discussed previously, the main background comes from secondary kaons from B decays. It depends upon a large number of channels involving high-multiplicity B and D decays. It is therefore not expected that the MonteCarlo will describe perfectly
- We have chosen a data driven approach using Kaon momentum domains where no signal is present.
 - Two good regions : Masses above the X(3872) and below the η_c
 - Two intermediate regions needed, where some signl tails are present
 - MonteCarlo is used to take into account small signal leaks in these regions

Determination of the background from signal free regions

MC without signal kaons

Signal-only distributions used to estimate the signal contributions in the « signal-free » regions

K[±] momentum recoil in the B center-of-mass

NN tuned for low mass region

BABAR

Preliminary

First evidence of the $B^+ \rightarrow X(3872)$ K⁺ transition

20

Fit without X3872

Systematics studies

Resonance	η_c (%)	X(3872) (%)
K identification	1	5
Decay modes	-	
Efficiency	0	5
p_K spectrum: peak position	2	2
p_K spectrum: signal narrow width	1	1
p_K spectrum: signal wide width	5	5
p_K spectrum: narrow width fraction	2	2
p_K spectrum: background shape	-	13
Decay width	1	-
Signal residuals	-	4
Total	6	15.5

Branching Fractions determination

- In this analysis, an absolute BR measurement can be done either by B counting, or by reference to a well known BR. Both can be combined
- In the first method , one does not have to pay the price of the uncertainty in the reference BR nor the statistical uncertainty associated to its measurement. However, the B counting systematic uncertainty is not negligible (~5%) and there is no cancellation of systematics in the selection process.
- Given the good precision of the BR(B⁺ →J/ψ K⁺) in the PDG (3%) and our good statistical precision on this channel (8%), we chose to use the second method.
- The BR extraction therefore only relies on the ratio of the selection efficiencies of the X(3872) and J/ ψ , given by the MC.

Branching fraction results

Particle	Yield	$BF(10^{-4})$	Recent BELLE-1 measurements Phys.Rev.D97(2018)012005
J/ψ	1463 ± 133	10.1 ± 0.29 (Ref from [12])	8.9±0.6±0.5
η_c	1334 ± 129	$9.6 \pm 1.2 (\text{stat}) \pm 0.4 (\text{sys}) \pm 0.3 (\text{ref})$	12.0±0.8±0.7
χ_{c0}	287 ± 181	$2.0 \pm 1.3 (sat) \pm 0.3 (sys)$	2.0±0.9±0.1
χ_{c1}	1035 ± 193	$4.0 \pm 0.8 (\text{stat}) \pm 0.6 (\text{sys})$	5.8±0.9±0.5
χ_{c2}	200 ± 164	$<\!\!2.0$	
$\eta_c(2S)$	527 ± 271	$3.4 \pm 1.7 (\text{stat}) \pm 0.5 (\text{sys})$	4 8+1 1+0 3
ψ'	1278 ± 285	$4.6 \pm 1(\text{stat}) \pm 0.7(\text{sys})$	6.4±1.0±0.4
$\psi(3770)$	497 ± 308	$3.2\pm2.0(\text{stat})\pm0.5(\text{syst})$	<2.3
X(3872)	992 ± 285	$2.1 \pm 0.6 (stat) \pm 0.3 (syst)$	1.2±1.1±0.1 <2.6

Consistent with PDG 2016 (ie our previous results!)

Interpretation of the X(3872) results

- Production
 - Not many predictions exist of the BR(B⁺→K⁺ X(3872)) but this BR must depend as well of the nature of the X(3872) particle.
 - Liu, X. & Wang, YM. Eur. Phys. J. C (2007) 49: 643 predicted a BR too large when assigning X(3872) to a normal charmonium state
- Decay
 - Using 1 MeV as the X(3872) total width (the present upper limit), the measured width of the transition $\Gamma(X(3872) \rightarrow J/\psi \pi \pi)$ is of order 40 KeV.
 - This is much smaller than ~1 MeV expected for a normal charmonium particle or a tetraquark tightly bound state
 - A prediction for a molecule is $\Gamma[X \to J/\psi \pi^+\pi^-] = |G_{X\psi\rho}|^2 (223 \text{ keV}).$ from E. Braaten and M. Kusunoki, **Phys.Rev. D72 (2005) 054022**
 - Predictions for Γ(X(3872)→J/ψγ) can be found around 100 keV (Aceti et al., Phys.Rev. D86 (2012) 113007) while this result gives a range around 10 KeV

Conclusion

- Three significant updates to the original 2006 BABAR analysis:
 - statistics (x2 luminosity, and x4 number of B reco)
 - analysis workflow (usage of all B candidates)
 - background shape from signal -free regions
- This led to the first evidence of the decay $B^+ \rightarrow K^+ X(3872)$ at 3σ level

 $BR(B^+ \rightarrow K^+ X(3872) = (2.1 \pm 0.6 \pm 0.3 \pm 0.1)10^{-4}$

• From this, it follows:

BR(X(3872)→J/ψππ)=(4.1±1.3)%

. These results will certainly bring very useful information to better understand the complex nature of the X(3872) particule. They support a molecular interpretation

 The other charmonia BR(B⁺→K⁺X_{cc}) are in agreement with BELLE recent results and of similar precision

Backup

$B^{\pm} \rightarrow K^{\pm} X^0$; Lower charmonium mass region, Search for Neutral D^*

Statistical significance of the $D^{**}(2680)\sim 3.3\sigma$

Particle	Yield	Peak Position	$BF(10^{-4})$	PDG 2014
D^0	126 ± 20		$3.5 \pm 0.5 \pm 0.3$	3.7 ± 0.17
D*0	126 ± 21		$3.5 \pm 0.5 \pm 0.3$	4.2 ± 0.34
$D_1(2420)^0$	97 ± 25		$2.1\pm0.5\pm0.3$	-
$D^{**0}(2680)$	95 ± 29	2.68 ± 0.003	$2.1\pm0.6\pm0.3$	-

The branching fractions are consistent with PDG 2014 values.

Two-body decays $B^0 \rightarrow K^-X^+$

DE L'ACCÉLÉRATEUR L I N É A I R E

G. Wormser, QWG 2019, Torino May 2019

• Analysis extendend to *D* mass region

	Particle	Yield	Peak Position	$BF(10^{-4})$	PDG 2014	PDG 2017
	D^0	126 ± 20		$3.5 \pm 0.5 (sta) \pm 0.3 (sys)$	$3.7 {\pm} 0.17$	3.74±0.16
NEW	D^{*0}	126 ± 21		$3.5 \pm 0.5 (\text{stat}) \pm 0.3 (\text{sys})$	4.2 ± 0.34	
<u> </u>	$D_1(2420)^0$	97 ± 25		$2.1 \pm 0.5 (\text{stat})) \pm 0.3 (\text{sys})$	-	
Ţ	$D^{**0}(2680)$	95 ± 29	$2.68 {\pm} 0.003$	$2.1 \pm 0.6 (\text{stat}) \pm 0.3 (\text{sys})$	-	
	D^{\pm}	$44{\pm}10$		$3.3 \pm 0.8 (sta) \pm 0.3 (sys)$	$2.0{\pm}0.21$	1.86±0.20
	$D^{*\pm}$	40 ± 10		$3.0 \pm 0.8 (\text{stat}) \pm 0.3 (\text{sys})$	$2.1 {\pm} 0.16$	2.12±0.15
	$D^{*}(2420)^{\pm}$	52 ± 13		$3.9 \pm 1.0(\text{stat})) \pm 0.3(\text{sys})$	-	

Results from the fits of the K momentum spectra in the D region mass, performed for B^{\pm} and B^{0} samples of 1.67 M and 0.8 M reconstructed B events, respectively.

Mass distribution

Belle analysis

Belle results

Mode	Yield	Significance (σ)	$\epsilon(10^{-3})$	$B(10^{-4})$	World average for \mathcal{B} (10 ⁻⁴) [10]
η_c	2590 ± 180	14.2	2.73 ± 0.02	$12.0 \pm 0.8 \pm 0.7$	9.6 ± 1.1
J/ψ	1860 ± 140	13.7	2.65 ± 0.02	$8.9\pm0.6\pm0.5$	10.26 ± 0.031
χ_{c0}	430 ± 190	2.2	2.67 ± 0.02	$2.0 \pm 0.9 \pm 0.1 \ (< 3.3)$	$1.50^{+0.15}_{-0.14}$
χ_{c1}	1230 ± 180	6.8	2.68 ± 0.02	$5.8\pm0.9\pm0.5$	4.79 ± 0.23
$\eta_c(2S)$	1050 ± 240	4.1	2.77 ± 0.02	$4.8\pm1.1\pm0.3$	3.4 ± 1.8
$\psi(2S)$	1410 ± 210	6.6	2.79 ± 0.02	$6.4\pm1.0\pm0.4$	6.26 ± 0.24
$\psi(3770)$	-40 ± 310	-	2.76 ± 0.02	$-0.2 \pm 1.4 \pm 0.0 \ (< 2.3)$	4.9 ± 1.3
X(3872)	260 ± 230	1.1	2.79 ± 0.01	$1.2 \pm 1.1 \pm 0.1 \ (< 2.6)$	(< 3.2)
X(3915)	80 ± 350	0.3	2.79 ± 0.01	$0.4 \pm 1.6 \pm 0.0 \ (< 2.8)$	-

The higher mass region

The D region

Particle	Yield	Peak Position	$BF(10^{-4})$
D^0	126 ± 20	-	$3.5 \pm 0.5 (sta) \pm 0.3 (sys)$
D^{*0}	126 ± 21	-	$3.5 \pm 0.5 (stat) \pm 0.3 (sys)$
$D_1(2420)^0$	97 ± 25	-	$2.1 \pm 0.5 (stat)) \pm 0.3 (sys)$
$D^{**0}(2680)$	95 ± 29	2.68 ± 0.003	$2.1 \pm 0.6 (\text{stat}) \pm 0.3 (\text{sys})$
D^{\pm}	44 ± 10	-	$3.3 \pm 0.8 (sta) \pm 0.3 (sys)$
$D^{*\pm}$	40 ± 10	-	$3.0 \pm 0.8 (stat) \pm 0.3 (sys)$
$D^{*}[2420]^{\pm}$	52 ± 13	-	$3.9 \pm 1.0(\text{stat})) \pm 0.3(\text{sys})$

Two-body decays $B^0 \rightarrow K^-X^+$

DE L'ACCÉLÉRATEUR L I N É A I R E

G. Wormser, QWG 2019, Torino May 2019