Quarkonium 2019, Turin

XIII International Workshop on Heavy Quarkonium

Threshold Effects and the Line Shape of the X(3872) in EFT

Marcel Schmidt

Technische Universität Darmstadt

with H.-W. Hammer and M. Jansen (TUD)

May 16, 2019

M(J/ψ ππ) (GeV)

• Very close to $D^0 \overline{D}^{0*}$:

[Tomaradze et al., PRD 91 (2015)]

The X(3872) ... as a Molecule 1. 2003: Narrow charmonium @ Belle $\Gamma_X < 1.2 \,\mathrm{MeV}$ > 10 fm! [Belle, PRD 84 (2011)] 2. Isospin channels T = 0, 1 comparable Ē \Rightarrow Exotic! 3. 2013: *J^{PC}* = 1⁺⁺ @ LHCb

• Very close to $D^0 \overline{D}^{0*}$:

[Tomaradze et al., PRD 91 (2015)]

 $\delta_X < 0.2 \,\mathrm{MeV}$

... as a Molecule

• Very close to $D^0 \overline{D}^{0*}$:

[Tomaradze et al., PRD 91 (2015)]

... as a Molecule

• Very close to $D^0 \overline{D}^{0*}$:

[Tomaradze et al., PRD 91 (2015)]

... as a Molecule

• Very close to $D^0 \overline{D}^{0*}$:

[Tomaradze et al., PRD 91 (2015)]

Universality and the Width

Universality and the Width

Universality and the Width

Universality and the Width

Universality and the Width

Universality and the Width

Universality and the Width

Universality and the Width

$$\mathcal{L}_{\mathsf{EFT}}$$
 =

Lagrangian

FECHNISCHE

$$\sim \left[-a_1^{-1} + \frac{1}{2}r_1k^2 + \mathcal{O}(k^4) - ik^3 \right]^{-1}$$

Full propagator: = = = = = + =
$$\left[-\frac{a_1}{2}\right]^{-1} + \frac{1}{2}r_1k^2 + \mathcal{O}(k^4) - \frac{ik^3}{2}\right]^{-1}$$

 $g, \delta \Rightarrow (-300 \text{ MeV})^{-3} - 17 \text{ GeV}$

Full propagator: = = = = + =
$$-\frac{1}{2}r_1k^2 + \mathcal{O}(k^4) - ik^3$$
]⁻¹
 $g, \delta \Rightarrow (-300 \text{ MeV})^{-3} - 17 \text{ GeV}$

►
$$D^{0*}$$
 shallow ($\delta \ll m_{\pi}$) \Rightarrow Scale separation $K_{\text{lo}} \ll K_{\text{hi}}$
[Bertulani *et al.*, NPA 712 (2002)], [Bedaque *et al.*, PLB 569 (2003)]

$$\begin{array}{c}
0 \\
D\overline{D}\pi \\
\delta = 7.04(3) \text{ MeV}
\end{array} \xrightarrow{D\overline{D}^*} E/\text{MeV}$$

Full propagator: = = = = + = $-\frac{1}{2}r_1k^2 + O(k^4) - ik^3$] -1

$$g,\delta \Rightarrow (-300 \,\mathrm{MeV})^{-3} - 17 \,\mathrm{GeV}$$

- ► D^{0*} shallow ($\delta \ll m_{\pi}$) \Rightarrow Scale separation $K_{lo} \ll K_{hi}$ [Bertulani *et al.*, NPA 712 (2002)], [Bedaque *et al.*, PLB 569 (2003)]
- Counting scheme $a_1^{-1} \sim K_{hi}^3$ and $r_1 \sim K_{hi}^3 K_{lo}^{-2} \Rightarrow$ one **fine-tuning**!

$$\begin{array}{c}
0 \\
D\overline{D}\pi \\
\delta = 7.04(3) \text{ MeV}
\end{array} \xrightarrow{D\overline{D}^*} E/\text{MeV}$$

$$g, \delta \Rightarrow (-300 \,\mathrm{MeV})^{-3} - 17 \,\mathrm{GeV}$$

- ► D^{0*} shallow ($\delta \ll m_{\pi}$) \Rightarrow Scale separation $K_{\text{lo}} \ll K_{\text{hi}}$ [Bertulani *et al.*, NPA 712 (2002)], [Bedaque *et al.*, PLB 569 (2003)]
- Counting scheme $a_1^{-1} \sim K_{hi}^3$ and $r_1 \sim K_{hi}^3 K_{lo}^{-2} \Rightarrow$ one fine-tuning!
- ► Unitary cut small $\Leftrightarrow \Gamma[D^{0*} \to D^0 \pi^0] = 34.7(9) \text{ keV} \ll \delta \quad \checkmark$

Full propagator: = = = = = + = = -

$$\sim \left[-\frac{a_1^{-1}}{2} + \frac{1}{2}r_1k^2 + \mathcal{O}(k^4) - \frac{ik^3}{2} \right]^{-1}$$

$$g, \delta \Rightarrow (-300 \,\mathrm{MeV})^{-3} - 17 \,\mathrm{GeV}$$

- ► D^{0*} shallow ($\delta \ll m_{\pi}$) \Rightarrow Scale separation $K_{\text{lo}} \ll K_{\text{hi}}$ [Bertulani *et al.*, NPA 712 (2002)], [Bedaque *et al.*, PLB 569 (2003)]
- Counting scheme $a_1^{-1} \sim K_{hi}^3$ and $r_1 \sim K_{hi}^3 K_{lo}^{-2} \Rightarrow$ one fine-tuning!
- ▶ Unitary cut small $\Leftrightarrow \Gamma[D^{0*} \to D^0 \pi^0] = 34.7(9) \text{ keV} \ll \delta \quad \checkmark$
- ► Radiative decay width via a₁ ∈ C

LO Width (pole position)

► D^{0*} @ resonance \Rightarrow **Resum constant width** $\Gamma[D^{0*}]$ @ LO!

$$\left[E - \delta + i \Gamma[D^{0*}]/2\right]^{-1}$$
 (Breit-Wigner)

3-Body System LO Width (pole position)

► D^{0*} @ resonance \Rightarrow **Resum constant width** $\Gamma[D^{0*}]$ @ LO!

$$\left[E-\delta+i\Gamma[D^{0*}]/2\right]^{-1}$$
 (Breit-Wigner)

LO: Iterate contact force C₀(Λ) and LO propagator!

3-Body System LO Width (pole position)

► D^{0*} @ resonance \Rightarrow **Resum constant width** $\Gamma[D^{0*}]$ @ LO!

$$\left[E-\delta+i\Gamma[D^{0*}]/2\right]^{-1}$$
 (Breit-Wigner)

LO: Iterate contact force C₀(A) and LO propagator!

• **Renormalization**: Demand X(3872) pole w/ real part $\delta - \delta_X$

3-Body System LO Width (pole position)

► D^{0*} @ resonance \Rightarrow **Resum constant width** $\Gamma[D^{0*}]$ @ LO!

$$\left[E-\delta+i\Gamma[D^{0*}]/2\right]^{-1}$$
 (Breit-Wigner)

LO: Iterate contact force C₀(A) and LO propagator!

Renormalization: Demand X(3872) pole w/ real part $\delta - \delta_X$

NLO Width (pole position)

• Width corrections $\sim Z_X \sim \sqrt{\delta_X/\delta} < 0.17$ (tiny!)

NLO Width (pole position)

- Width corrections $\sim Z_X \sim \sqrt{\delta_X/\delta} < 0.17$ (tiny!)

NLO Width (pole position)

- Width corrections $\sim Z_X \sim \sqrt{\delta_X/\delta} < 0.17$ (tiny!)
- 1. D^{0*} self-energy:

$$Z_X \times \underbrace{\mathbb{T}^{(\mathrm{LO})}}_{T^{(\mathrm{LO})}} = \underbrace{\mathbb{T}}_{T^{(\mathrm{LO})}} \sim \mathbb{T}[\mathcal{D}^{0*}] \times \sqrt{\frac{\delta_X}{\delta}}$$

NLO Width (pole position)

- Width corrections $\sim Z_X \sim \sqrt{\delta_X/\delta} < 0.17$ (tiny!)

2. Pion exchanges:

NLO Width (pole position)

• Width corrections $\sim Z_X \sim \sqrt{\delta_X/\delta} < 0.17$ (tiny!)

2. Pion exchanges:

$$Z_X \times \underbrace{\left[\underbrace{T^{(\text{LO})}}_{\sim} \underbrace{T^{(\text{LO})}}_{\sim} \underbrace{T^{(\text{LO})}}_{\sim} \right]}_{\sim} \sim \underbrace{(\underbrace{\frac{m_{\pi}}{2m_D}}_{\sim})^2 \delta}_{\sim} \times \sqrt{\frac{\delta_X}{\delta}}$$

NLO Width (pole position)

- Width corrections $\sim Z_X \sim \sqrt{\delta_X/\delta} < 0.17$ (tiny!)
- 1. D^{0*} self-energy: Z_X

$$<$$
 $T^{(LO)} \sim \Gamma[D^{0*}] \times \sqrt{\frac{\delta \chi}{\delta}}$

2. Pion exchanges:

3. Charged mesons:

NLO Width (pole position)

- Width corrections $\sim Z_X \sim \sqrt{\delta_X/\delta} < 0.17$ (tiny!)
- 1. D^{0*} self-energy: Z_X

$$<$$
 $T^{(LO)} \sim \Gamma[D^{0*}] \times \sqrt{\frac{\delta_{\lambda}}{\delta}}$

2. Pion exchanges:

 $\Rightarrow \Gamma[D^{0*}] \times 1$

Width (pole position)

Width (pole position)

• Fast convergence! LO=NLO @ $\delta_X \approx 40 \text{ keV}!$

Width (pole position)

- Fast convergence! LO=NLO @ $\delta_X \approx 40 \text{ keV}!$
- ► Agreement with Baru *et al.* ⇒ No need for *d*-waves, charged pions... [Baru *et al.*, PRD 84 (2011)]

Line Shape for $X(3872) \rightarrow D\bar{D}\pi$

Line Shape for $X(3872) \rightarrow D\bar{D}\pi$

Line Shape for $X(3872) \rightarrow D\bar{D}\pi$

Enhancement @ $D^0 \overline{D}^{0*}$ threshold \implies no Breit-Wigner!

Line Shape for $X(3872) \rightarrow D\bar{D}\pi$

[MS, Jansen, Hammer, PRD 98 (2019)]

- **Enhancement** @ $D^0 \overline{D}^{0*}$ threshold \implies no Breit-Wigner!
- $\delta_X \rightarrow 0$: Maximum **above** threshold!!

Peak parameters

Peak parameters

Peak parameters

May 16, 2019 | Threshold Effects and the Line Shape of the X(3872) in EFT | Marcel Schmidt | 9/10

Summary and Outlook

- Line shape $X(3872) \rightarrow D^0 \bar{D}^0 \pi^0$ asymmetric
- $D^0 \overline{D}{}^0 \pi^0$ EFT: X(3872) pole \leftrightarrow line shape
- $D^{0*} = D^0 \pi^0$ resonance (Separation of scales)
- ► LO = Zero-range theory ($\Gamma_X = \Gamma[D^{0*}]$) & **NLO corrections tiny**
- ▶ Weak binding: **Exp. peak above** $D^0 \overline{D}^{0*}!!$

- Virtual X(3872) states
- Predict momentum distributions for PANDA (FAIR), Belle2, ...

$$\mathcal{L} = \mathcal{L}_{\mathrm{kin}} + (\mathcal{L}_{D\pi} + \mathcal{L}_{\bar{D}\pi}) + \mathcal{L}_{D\bar{D}\pi}$$
$$\mathcal{L}_{\mathrm{kin}} = D^{\dagger} \left[i \partial_0 + \frac{\nabla^2}{2m_D} \right] D + \bar{D}^{\dagger} \left[i \partial_0 + \frac{\nabla^2}{2m_D} \right] \bar{D} + \pi^{\dagger} \left[i \partial_0 + \frac{\nabla^2}{2m_\pi} \right] \pi$$
$$\mathcal{L}_{D\pi} = \mathbf{D}^{\dagger} \left[\Delta_0 + \Delta_1 i \partial_{\mathrm{cm}} + \sum_{n \ge 2} \Delta_n (i \partial_{\mathrm{cm}})^n \right] \mathbf{D} + g \left[\mathbf{D}^{\dagger} \cdot (\pi \overleftrightarrow{\nabla} D) + \mathrm{h.c.} \right]$$
$$\mathbf{W} / \overleftarrow{\nabla} \equiv \mu \left(m_{\pi}^{-1} \overleftarrow{\nabla} - m_D^{-1} \overrightarrow{\nabla} \right) \ i \partial_{\mathrm{cm}} \equiv i \partial_0 + \nabla^2 / (2M)$$

$$\mathcal{L}_{D\bar{D}\pi} = -C_0 \frac{1}{2} \left[\bar{D} \boldsymbol{D} + D \bar{\boldsymbol{D}} \right]^{\dagger} \cdot \left[\bar{D} \boldsymbol{D} + D \bar{\boldsymbol{D}} \right] + \dots$$

Inputs/Outputs

Table I: Inputs and Outputs of the EFT up to NLO				
	Two-Body System		Three-Body System	
	Inputs	Outputs	Inputs	Outputs
LO (κ^0)	$\delta,\delta_{+0},\delta_{++},\Gamma_{\!\rm c}$	$g^2, \Gamma_{D\pi}, a_1^{-1}, r_1/2$	δ_X	$\Gamma_X, \mathrm{d}\Gamma/\mathrm{d}E \left(\mathrm{with} \tilde{\delta}_X, \tilde{\Gamma}_X \right)$
	\mathcal{B}	$\Gamma_{D\gamma}$		
NLO (κ^2)		_	ν	

Three-Body System

Amplitude at NLO

Three-Body System

Renormalization

Virtual States

Extrapolation of Coupling

Virtual States

Line Shapes

Virtual States

Line Shapes

