Model independent investigation of the $R_{J/\psi}$ and R_{η_c,χ_{cJ},h_c}

Rui-Lin Zhu

Nanjing Normal University, Nanjing, Jiangsu 210023, China

arXiv:1808.10830 in collaboration with Wei Wang

QWG2019, May 13-17, 2019, Turino, Italy

May 2019

1/27

Outline

Motivation

- The anomaly $R_{J/\psi}$ at LHCb
- The breakdown of perturbative calculation at minimal momentum recoil point

The form factors of *B_c* into a charmonium within NRQCD

3 Model independent investigation of the $R_{J/\psi}$ and $R_{\eta c,\chi_{cJ},h_c}$

< (□) < 三 > (□)

Outline

Motivation

- The anomaly $R_{J/\psi}$ at LHCb
- The breakdown of perturbative calculation at minimal momentum recoil point
- 2) The form factors of B_c into a charmonium within NRQCD
- 3 Model independent investigation of the $R_{J/\psi}$ and R_{η_c,χ_{cJ},h_c}
- 4 Summary

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Anomaly in $b \rightarrow c \tau \nu$ transitions

• The measurements of R_D and R_{D*} by BABAR, Belle, and LHCb are $R_D = 0.407 \pm 0.039(stat) \pm 0.024(syst)$ and $R_{D*} = 0.306 \pm 0.013(stat) \pm 0.007(syst)$, which are 2.1 σ and 3.0 σ of deviations from Standard Model, respectively.

$$m{\mathcal{R}}_{\mathcal{D}^{(*)}} = rac{\Gamma(m{B} o m{D}^{(*)} + au + ar{
u}_{ au})}{\Gamma(m{B} o m{D}^{(*)} + \ell + ar{
u}_{\ell})}, \ \ \ell = m{e}, \mu$$

Remind: also seen in Monday talks by Daniel Aloni

• $R_{J/\psi} = 0.71 \pm 0.17(stat) \pm 0.18(syst)$ at LHCb indicated 3σ of deviations from SM, PRL120,121801(2018)

$$R_{J/\psi} = \frac{\Gamma(B \to J/\psi + \tau + \bar{\nu}_{\tau})}{\Gamma(B \to J/\psi + \mu + \bar{\nu}_{\mu})}$$

< ロ > < 同 > < 回 > < 回 >

R_D and R_{D*} by HFLAV Combined fitting in 2018

RLZ (Nanjing NU)

Very recent measurements of R_D and R_{D*} by Belle 0.2 σ and 1.1 σ of deviations respectively, 1904.08794

Motivation

The anomaly $R_{J/\psi}$ at LHCb

Recent measurement of $R_{J/\psi}$ by LHCb

Cohen et.al, 1807.02730

7/27

Outline

Motivation

- The anomaly $R_{J/\psi}$ at LHCb
- The breakdown of perturbative calculation at minimal momentum recoil point

2 The form factors of B_c into a charmonium within NRQCD

Motivation

3 Model independent investigation of the $R_{J/\psi}$ and R_{η_c,χ_{cJ},h_c}

4 Summary

Feynman diagrams for semileptonic B/Bs/Bc decays

Motivation

- The largest uncertainty is from the form factors (see review paper Bifani et.al.,1809.06229)
- The breakdown of perturbative calculation at minimal momentum recoil point

The breakdown of perturbative calculation at minimal momentum recoil point

• The initial and final hadrons overlap effects at minimal momentum recoil point are nonperturbative

The definition of the form factors of B_c into a S-wave charmonium

$$\begin{split} \langle \eta_c(p) | J_V^{\mu} | B_c(P) \rangle &= f_0^{\eta_c}(q^2) \frac{m_{B_c}^2 - m_{\eta_c}^2}{q^2} q^{\mu} + t_+^{\eta_c}(q^2) (P^{\mu} + p^{\mu} - \frac{m_{B_c}^2 - m_{\eta_c}^2}{q^2} q^{\mu}) \,, \\ \langle J/\psi(p,\varepsilon^*) | J_V^{\mu} | B_c(P) \rangle &= -\frac{2V^{J/\psi}(q^2)}{m_{B_c} + m_{J/\psi}} \epsilon^{\mu\nu\rho\sigma} \varepsilon^*_{\nu} p_\rho P_\sigma \,, \\ \langle J/\psi(p,\varepsilon^*) | J_A^{\mu} | B_c(P) \rangle &= -i[2m_{J/\psi} A_0^{J/\psi}(q^2) \frac{\varepsilon^* \cdot q}{q^2} q^{\mu} + (m_{B_c} + m_{J/\psi}) A_1^{J/\psi}(q^2) (\varepsilon^{*\mu} - \frac{\varepsilon^* \cdot q}{q^2} q^{\mu}) \\ &- A_2^{J/\psi}(q^2) \frac{\varepsilon^* \cdot q}{m_{B_c} + m_{J/\psi}} (P^{\mu} + p^{\mu} - \frac{m_{B_c}^2 - m_{J/\psi}^2}{q^2} q^{\mu})] \,, \end{split}$$

< 3

The definition of the form factors of B_c into a P-wave charmonium

$$\langle \chi_{c0}(p)|J^{\mu}_{A}|B_{c}(P)\rangle = f_{0}^{\chi_{c0}}(q^{2})\frac{m_{B_{c}}^{2}-m_{\chi_{c0}}^{2}}{q^{2}}q^{\mu} + f_{+}^{\chi_{c0}}(q^{2})(P^{\mu}+p^{\mu}-\frac{m_{B_{c}}^{2}-m_{\chi_{c0}}^{2}}{q^{2}}q^{\mu}),$$

$$\begin{split} \langle \chi_{c1}(p,\varepsilon^*)|J_V^{\mu}|B_c(P)\rangle &= -i[2m_{\chi_{c1}}A_0^{\chi_{c1}}(q^2)\frac{\varepsilon^*\cdot q}{q^2}q^{\mu} + (m_{B_c}+m_{\chi_{c1}})A_1^{\chi_{c1}}(q^2)(\varepsilon^{*\mu}-\frac{\varepsilon^*\cdot q}{q^2}q^{\mu}) \\ &-A_2^{\chi_{c1}}(q^2)\frac{\varepsilon^*\cdot q}{m_{B_c}+m_{\chi_{c1}}}(P^{\mu}+p^{\mu}-\frac{m_{B_c}^2-m_{\chi_{c1}}^2}{q^2}q^{\mu})]\,, \end{split}$$

$$\langle \chi_{c1}(\boldsymbol{p},\boldsymbol{\varepsilon}^*)|J_A^{\mu}|B_c(\boldsymbol{P})\rangle = \frac{2V^{\chi_{c1}}(\boldsymbol{q}^2)}{m_{B_c}+m_{\chi_{c1}}}\epsilon^{\mu\nu\rho\sigma}\varepsilon_{\nu}^*p_{\rho}P_{\sigma},$$

$$\begin{split} \langle \chi_{c2}(\rho,\varepsilon^*)|J^{\mu}_{A}|B_{c}(P)\rangle &= & [2m_{\chi_{c2}}A^{\chi_{c2}}_{0}(q^{2})\frac{\varepsilon^{*\alpha\beta}q_{\beta}}{q^{2}}q^{\mu} + (m_{B_{c}} + m_{\chi_{c2}})A^{\chi_{c2}}_{1}(q^{2})(\varepsilon^{*\mu\alpha} - \frac{\varepsilon^{*\alpha\beta}q_{\beta}}{q^{2}}q^{\mu}) \\ & -A^{\chi_{c2}}_{2}(q^{2})\frac{\varepsilon^{*\alpha\beta}q_{\beta}}{m_{B_{c}} + m_{\chi_{c2}}}(P^{\mu} + \rho^{\mu} - \frac{m^{2}_{B_{c}} - m^{2}_{\chi_{c2}}}{q^{2}}q^{\mu})]\frac{-iP_{\alpha}}{m_{B_{c}}} \,, \end{split}$$

$$\langle \chi_{c2}(\rho,\varepsilon^*)|J_V^{\mu}|B_c(P)\rangle = \frac{2V^{\chi}c^2(q^2)}{m_{B_c}(m_{B_c}+m_{\chi_{c2}})}\epsilon^{\mu\nu\rho\sigma}\varepsilon^*_{\nu\alpha}p_{\rho}P_{\sigma}P_{\alpha}.$$

May 2019

12/27

RLZ (Nanjing NU)

The form factors of B_c into a charmonium at maximum recoil region

 NLO QCD+Relativisitc corrections for S-wave charmonium Analytic expression
 Bell et. al.,NPB164,189(2007);Qiao et. al.,JHEP08,087(2012);Qiao et. al.,PRD87,014009(2013);
 R.L. Zhu et. al.,PRD95, 094012(2017)

K factor: 0.2-0.5

 NLO Relativistic corrections for P-wave charmonium see R.L. Zhu, NPB931,359(2018)

K factor: 0.15-0.3

The form factors of B_c into a charmonium within Lattice QCD

Lytle et.al, 1605.05645; HPQCD, 1611.01987; currently only four form factors data

Inputs in a model independent way

- Lattice QCD simulations for the form factors of *B_c* to a charmonium. (limited currently)
- NRQCD calculations (breakdown at minimum momentum recoil region)
- HQET(heavy quark effective theory) predictions (valid only for minimum mentum recoil region)
- QFT's analyticity
- Lattice QCD data + NRQCD calculations + HQET predictions + QFT's analyticity (combined)

< 回 > < 三 > < 三 >

HQET

in minimum momentum recoil region

- The splitting between $J^P = 0^-$ and $J^P = 1^-$ mesons is small because the color magnetic interaction is suppressed by $1/m_Q$.
- Heavy quark flavor and spin symmetry when $m_Q \rightarrow \infty$.

$$\begin{split} |D^*, +1\rangle &= |D, +1/2, +1/2\rangle \\ |D^*, 0\rangle &= \frac{1}{\sqrt{2}} \left(|D, +1/2, -1/2\rangle + |D, -1/2, +1/2\rangle \right) & \langle D, s'_h, s'_m, v' | \ \overline{c} \ \Gamma \ b \ \left| \overline{B}, s_h, s_m, v \right\rangle \\ &= \langle c, s'_h, v' | \ \overline{c} \ \Gamma \ b \ \left| b, s_h, v \right\rangle \langle \text{muck}, s'_m, v' | \text{muck}, s_m, v \rangle \\ &= \langle c, s'_h, v' | \ \overline{c} \ \Gamma \ b \ \left| b, s_h, v \right\rangle \langle \text{muck}, s'_m, v' | \text{muck}, s_m, v \rangle \\ &= \langle c, s'_h, v' | \ \overline{c} \ \Gamma \ b \ \left| b, s_h, v \right\rangle \langle \text{muck}, s'_m, v' | \text{muck}, s_m, v \rangle \\ &= \langle c, s'_h, v' | \ \overline{c} \ \Gamma \ b \ \left| b, s_h, v \right\rangle \langle \text{s}_{s'_m s_m} (v', v) \end{split}$$

 $R_{J/\psi}$

Acknowledgement to Howard Georgi

RLZ (Nanjing NU)

イロト イポト イヨト イヨト

HQET calculation

in minimum momentum recoil region (*v* is the bottom quark velocity; v' is the produced charm quark velocity; $\omega = v \cdot v' = 1$; $\xi_H(\omega)$ is Isgur-Wise functions)

$$\begin{split} &\langle \eta_{c}(v')|\bar{c}_{v'}\gamma^{\mu}b_{v}|B_{c}(v)\rangle &= \xi_{H}(\omega)[v^{\mu}+v'^{\mu}]\,,\\ &\langle J/\psi(v',\varepsilon^{*})|\bar{c}_{v'}\gamma^{\mu}b_{v}|B_{c}(v)\rangle &= -\xi_{H}(\omega)\epsilon^{\mu\nu\rho\sigma}\varepsilon^{*}_{\nu}v'_{\rho}v_{\sigma}\,,\\ &\langle J/\psi(v',\varepsilon^{*})|\bar{c}_{v'}\gamma^{\mu}\gamma^{5}b_{v}|B_{c}(v)\rangle &= -i\xi_{H}(\omega)[(1+\omega)\varepsilon^{*\mu}-\varepsilon^{*}\cdot vv'^{\mu}]\,, \end{split}$$

$$\begin{split} &\langle h_c(v',\varepsilon^*)|\bar{c}_{v'}\gamma^{\mu}b_{v}|B_c(v)\rangle &= i\xi_{E}(\omega)[(\omega-1)\varepsilon^{*\mu}-\varepsilon^*\cdot vv'^{\mu}]\,,\\ &\langle h_c(v',\varepsilon^*)|\bar{c}_{v'}\gamma^{\mu}\gamma^5 b_{v}|B_c(v)\rangle &= \xi_{E}(\omega)\epsilon^{\mu\nu\rho\sigma}\varepsilon^*_{\nu}v'_{\rho}v_{\sigma}\,,\\ &\langle \chi_{c0}(v')|\bar{c}_{v'}\gamma^{\mu}\gamma^5 b_{v}|B_c(v)\rangle &= -\xi_{E}(\omega)[v^{\mu}-v'^{\mu}]\,, \end{split}$$

$$\begin{split} \langle \chi_{c1}(v',\varepsilon^*)|\bar{c}_{v'}\gamma^{\mu}b_{v}|B_{c}(v)\rangle &= \quad \frac{i\xi_{F}(\omega)}{\sqrt{6}}[(\omega^{2}-1)\varepsilon^{*\mu}-\varepsilon^{*}\cdot v(3v^{\mu}-(\omega-2)v'^{\mu})]\,,\\ \langle \chi_{c1}(v',\varepsilon^*)\bar{c}_{v'}\gamma^{\mu}\gamma^{5}b_{v}|B_{c}(v)\rangle &= \quad \frac{(\omega+1)\xi_{F}(\omega)}{\sqrt{6}}\epsilon^{\mu\nu\rho\sigma}\varepsilon^{*}_{\nu}v'_{\rho}v_{\sigma}\,,\\ \chi_{c2}(v',\varepsilon^*)|\bar{c}_{v'}\gamma^{\mu}\gamma^{5}b_{v}|B_{c}(v)\rangle &= \quad -i\xi_{F}(\omega)v_{\alpha}[(1+\omega)\varepsilon^{*\alpha\mu}-\varepsilon^{*\alpha\beta}v_{\beta}v'^{\mu}]\,,\\ \langle \chi_{c2}(v',\varepsilon^*)|\bar{c}_{v'}\gamma^{\mu}b_{v}|B_{c}(v)\rangle &= \quad \xi_{F}(\omega)\epsilon^{\mu\nu\rho\sigma}\varepsilon^{*}_{\alpha\nu}v^{\alpha}v'_{\rho}v_{\sigma}\,. \end{split}$$

< ロ > < 同 > < 回 > < 回 >

HQET results

at minimum momentum recoil point ($\omega = \mathbf{v} \cdot \mathbf{v}' = \mathbf{1}$)

$$\begin{split} f_{0}^{\eta_{c}}(\omega) &= \frac{(\omega+1)\xi_{H}(\omega)\sqrt{m_{B_{c}}}\sqrt{m_{\eta_{c}}}}{m_{B_{c}}+m_{\eta_{c}}}, & 0.94 \quad (\text{w=1}) \\ f_{+}^{\eta_{c}}(\omega) &= \frac{\xi_{H}(\omega)\left(m_{B_{c}}+m_{\eta_{c}}\right)}{2\sqrt{m_{B_{c}}}\sqrt{m_{\eta_{c}}}}, & 1.07 \\ V^{J/\psi}(\omega) &= \frac{\xi_{H}(\omega)\left(m_{B_{c}}+m_{J/\psi}\right)}{2\sqrt{m_{J/\psi}}\sqrt{m_{B_{c}}}}, & 1.06 \\ A_{0}^{J/\psi}(\omega) &= \frac{\xi_{H}(\omega)\left(m_{B_{c}}+m_{J/\psi}\right)}{2\sqrt{m_{J/\psi}}\sqrt{m_{B_{c}}}}, & 1.06 \\ A_{1}^{J/\psi}(\omega) &= \frac{(\omega+1)\xi_{H}(\omega)\sqrt{m_{J/\psi}}\sqrt{m_{B_{c}}}}{m_{B_{c}}+m_{J/\psi}}, & 0.94 \\ A_{2}^{J/\psi}(\omega) &= \frac{\xi_{H}(\omega)\left(m_{B_{c}}+m_{J/\psi}\right)}{2\sqrt{m_{J/\psi}}\sqrt{m_{B_{c}}}}. & 1.08 \\ \overset{\mathfrak{Sqc}}{\mathfrak{Sqc}} \end{split}$$

Analyticity and dispersion constraints

- Lots of works on the analytic properties of the Fourier transform of the 2-point correlator.
- B/Bs/Bc decays form factors are widely studied by the analyticity and dispersion relations. (Z-series) See literature: Boyd et.al,PRL74,4603(1995);Cohen et.al,1807.02730;Murphy et.al,1808.05932;Berns et.al,1808.07360

Analyticity and dispersion constraints for all the physical region

Introduce two currents:

$$j_V^\mu = ar c \gamma^\mu b \,, \qquad \qquad j_A^\mu = ar c \gamma^\mu \gamma^5 b \,.$$

Two-point correlation function of two currents:

$$\begin{aligned} \Pi^{\mu\nu}(q^2) &= i \int d^4x \, e^{j \, q \cdot x} \, \langle 0 | \, \mathrm{T} \, j^{\mu}(x) \, j^{\dagger \, \nu}(0) \, | 0 \rangle \\ &= (\frac{q^{\mu} q^{\nu}}{q^2} - g^{\mu\nu}) \Pi_T(q^2) + \frac{q^{\mu} q^{\nu}}{q^2} \Pi_L(q^2) \,, \end{aligned}$$

Dispersion relation:

$$\Pi_{I}(q^{2}) = \frac{1}{\pi} \int_{0}^{\infty} dt \, \frac{\operatorname{Im} \Pi_{I}(t)}{t - q^{2}} \, .$$

Analyticity and dispersion constraints for all the physical region

Inserting the hadron bases:

$$\begin{split} \mathrm{Im}\,\Pi^{BP}_{l,V} &= \frac{1}{2} \int \frac{d^3 p_B}{(2\pi)^3 2 E_B} \frac{d^3 p_P}{(2\pi)^3 2 E_P} \left(2\pi\right)^4 \delta^4 (q-p_B-p_P) \frac{\lambda}{3q^2} \left|A^P_{l,V}\right|^2 \\ &= \frac{1}{48\pi} \frac{\lambda^{3/2}}{q^4} \left|A^P_{l,V}\right|^2 \,, \end{split}$$

Operator Product Expansion (OPE):

$$\begin{split} i \int dx \, e^{i \, q \cdot x} \, \left\langle 0 \right| \mathrm{T} j^{\mu}(x) j^{\dagger \, \nu}(0) \left| 0 \right\rangle \\ = \, \left(\frac{q^{\mu} q^{\nu}}{q^2} - g^{\mu \nu} \right) \sum_{n=1}^{\infty} \, C_{T,n}(q) \, \left\langle 0 \right| : \mathcal{O}_n(0) : \left| 0 \right\rangle \\ + \frac{q^{\mu} q^{\nu}}{q^2} \sum_{n=1}^{\infty} \, C_{L,n}(q) \, \left\langle 0 \right| : \mathcal{O}_n(0) : \left| 0 \right\rangle \,, \end{split}$$

Analyticity and dispersion constraints for all the physical region

The inequality:

 $\operatorname{Im}\Pi_{l}^{BV}(t) \leq \operatorname{Im}\Pi_{l}(t).$

Lead to the z-series:

$$F_i(t) = \frac{1}{B(t)\phi_i(t)}\sum_k \alpha_k^i z^k(t).$$

• $F_i(t)$ represents one form factors. $t_{\pm} \equiv m_{B_c}^2 \pm m_{H}^2$.

$$z(t) \equiv z(t, t_0) = rac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} + \sqrt{t_+ - t_0}}$$

B(t) represents the Blaschke factor from the low-lying poles

Results Form factors of B_c to J/ψ

Results Form factors of B_c to J/ψ

イロト イヨト イヨト イヨト

Results $R_{J/\psi}$ and R_{η_c,χ_{cJ},h_c}

			-	
R _H	LHCb data	z-Series approach	S1	S2
$R_{J/\psi}$	$0.71 \pm 0.17(stat) \pm 0.18(syst)$	0.25 ± 0.01	0.31 ± 0.02	0.31 ± 0.01
$R_{J/\psi}^{L'}$		$\textbf{0.23} \pm \textbf{0.01}$	0.29 ± 0.01	0.28 ± 0.01
$R_{J/\psi}^{\perp}$ R_{η_c}		$\textbf{0.28} \pm \textbf{0.01}$	0.36 ± 0.02	0.35 ± 0.01
Rnc		0.31 ± 0.01	0.39 ± 0.02	0.41 ± 0.02
$R_{\chi_{c0}}$		0.09 ± 0.01	0.11 ± 0.01	0.12 ± 0.01
$R_{\chi_{c1}}$		0.09 ± 0.01	0.11 ± 0.01	0.12 ± 0.01
$R_{\chi_{c1}}^L$ $R_{\chi_{c1}}^L$		0.10 ± 0.02	0.11 ± 0.02	0.13 ± 0.01
$R_{\chi_{c1}}^{\perp}$		0.09 ± 0.01	0.11 ± 0.01	$\textbf{0.12} \pm \textbf{0.01}$
R _{hc}		$0.06^{+0.03}_{-0.01}$	$0.08^{+0.03}_{-0.01}$	$0.08\substack{+0.03\\-0.01}$
$R_{h_c}^L$		$0.06^{+0.02}_{-0.02}$	$0.08^{+0.02}_{-0.02}$	$0.07^{+0.02}_{-0.02}$
$egin{array}{c} R_{h_{\mathcal{C}}}^{L} \ R_{h_{\mathcal{C}}}^{\perp} \end{array} \end{array}$		$0.14_{-0.01}^{+0.00}$	$0.18^{+0.01}_{-0.01}$	$0.17^{+0.01}_{-0.01}$
$R_{\chi_{c2}}$		$0.04^{+0.00}_{-0.01}$	$0.05^{+0.01}_{-0.01}$	$0.05^{+0.01}_{-0.01}$
$R_{\chi_{C2}}^L$		$\textbf{0.03} \pm \textbf{0.01}$	0.04 ± 0.01	0.04 ± 0.01
$R_{\chi_{C2}}^{\perp}$		$0.05\substack{+0.01 \\ -0.00}$	$0.06\substack{+0.01 \\ -0.01}$	$0.07\substack{+0.01 \\ -0.01}$

S1 and S2 represent the new physics contributions including

$$O_{V_1} = (\bar{c}_L \gamma^\mu b_L)(\bar{\tau}_L \gamma_\mu \nu_L), \quad O_{V_2} = (\bar{c}_R \gamma^\mu b_R)(\bar{\tau}_L \gamma_\mu \nu_L). \tag{1}$$

▲ E ト E つへの May 2019 25/27

イロト イヨト イヨト イヨト

Summary

- Form factors of B_c to a charmonium at maximum recoil region are in NLO accuracy.
- Form factors of B_c to a charmonium are expanded into Z-series using HQET and Dispersion relations.
- The theoretical uncertainty is reduced, but the SM value of $R_{J/\psi}$ is a significant deviation from the LHCb data.
- Outlook
 - More bin and polarization dependent measurements.
 - More LQCD simulations.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank You!

イロト イヨト イヨト イヨト

æ

27 / 27

May 2019