X(3872) at BESIII

Speaker: Junhao Yin on behalf of BESIII Collaboration

What have we known about X(3872)

- Mass
 - $3871.68 \pm 0.17 \text{ MeV}/c^2$
 - $B_E = 0.01 \pm 0.20 \text{ MeV}/c^2$
- Width
 - < 1.2 MeV
- $J^{PC} = 1^{++}$
- Production
 - In $pp/p\bar{p}$ collision
 - In B decays
 - In Y decays
- Decay
 - $\pi^+\pi^- J/\psi$ and $\omega J/\psi$
 - $\gamma J/\psi$ and $\gamma \psi$ (3686)
 - $D^0\overline{D}^{*0} + c.c.$

- What is it?
 - Loosely $D^0\overline{D}^{0*}$ bound state?
 - Mixture of χ_{c1}' and $D^0 \overline{D}^{0*}$?
 - Cusp?
 - Tetraquarks?

Dº-D^{*0} "molecule"

What **BESIII** have contributed

[PRL 112,092001(2014)]

A new X(3872) production mode If we take $\mathcal{B}(X(3872) \rightarrow \pi\pi J/\psi) \sim 5\%$ (>3.2% in PDG) $\frac{\sigma(e^+e^- \rightarrow \gamma X(3872))}{\sigma(e^+e^- \rightarrow \pi\pi J/\psi)} \sim 10\%$ around Y(4260) Large production rate, low background level

What BESIII now have

Massive data sample around the Y(4230) peak, with the total integrated luminosity larger than 9.0 fb⁻¹

More data are being taken this year.

Background is much lower than in other productions.

Observation of $X(3872) \rightarrow \pi^0 \chi_{c1}(1P)$

≻In conventional $c\bar{c}$ hypothesis, $\Gamma(X(3872) \rightarrow \pi^0 \chi_{c1}(1P)) \sim 0.06$ keV

In tetraquark/molecular state hypothesis, the decay width could be sizeable.
[PRD 77, 014013(2008)], [PRD 92, 034019(2015)]

- \succ χ_{cJ}(1P) mass window: [3.35, 3.60] GeV/c².
- ▶ Very clear signal of X(3872), $N_{X(3872)} = 16.9^{+5.2}_{-4.9}$
- \succ Statistical significance is 4.8σ
- No X(3872) events outside of Y(4260) zone

arXiv:1901.03992

Observation of $X(3872) \rightarrow \pi^0 \chi_{c1}(1P)$

	$\pi^+\pi^-J/\psi$	$\pi^0\chi_{c0}$	$\pi^0\chi_{c1}$	$\pi^0\chi_{c2}$
Event yield	$84.1^{+10.1}_{-9.4}$	$1.9^{+1.9}_{-1.3}$	$10.8^{+3.8}_{-3.1}$	$2.5^{+2.3}_{-1.7}$
Significance (σ)	16.1	1.6	5.2	1.6
Ratio to $\pi^+\pi^-J/\psi$		$6.6^{+6.5}_{-4.5} \pm 1.1$ (19)	$0.88^{+0.33}_{-0.27}\pm0.10$	$0.40^{+0.37}_{-0.27} \pm 0.04(1.1)$

*Numbers in the parentheses are upper limits at 90% C.L.

- ► Using $\mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi) > 3.2\%$ and < 6.4%, it is found that $\mathcal{B}(X(3872) \to \pi^0 \chi_{c1}(1P)) \sim 3 6\%$
- ► Using $\Gamma_{X(3872)} \sim 1.2$ MeV, we get the predicted $\mathcal{B}(X(3872) \rightarrow \pi^0 \chi_{c1}(1P)) \sim 0.5\%$
- Conclusion: disfavor the $c\bar{c}$ interpretation of the X(3872). arXiv:1901.03992

QWG 2019, Junhao Yin

Observation of $X(3872) \rightarrow \omega J/\psi$

arXiv:1903.04695

► Belle and BABAR reported 4σ evidence for this decay, and give $\frac{\mathcal{B}(X(3872) \rightarrow \pi^{+}\pi^{-}\pi^{0}J/\psi)}{\mathcal{B}(X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi)} = 1.0 \pm 0.4 \pm 0.3$

► BESIII is expected to find ~70 $X(3872) \rightarrow \omega J/\psi$ events with the data accumulated around Y(4230).

arXiv:1903.04695

At least one additional BW-formed resonance expect X(3872)

- ➤ X(3915) along with X(3960).
- ➤ or X(3930)

Hard to distinguish the two hypotheses since only 2.5σ difference between them.

Observation of $X(3872) \rightarrow \omega J/\psi$

arXiv:1903.04695

→ By fitting the cross sections of $e^+e^- \rightarrow \gamma X(3872)$ with X(3872) $\rightarrow \omega J/\psi$ and X(3872) $\rightarrow \pi^+\pi^- J/\psi$, we give

$$\mathcal{R} \equiv \frac{\mathcal{B}[X(3872) \rightarrow \omega J/\psi]}{\mathcal{B}[X(3872) \rightarrow \pi^+ \pi^- J/\psi]} = 1.6^{+0.4}_{-0.3} \pm 0.2, \text{ agree with the previous measurements.}$$

$$0.8 \pm 0.3 \text{ from BABAR}$$

QWG 2019, Junhao Yin

More measurements

Significances for $\gamma J/\psi$ and $\gamma \psi$ (3686)

Combined the BaBar, Belle, and LHCb $3.4 \pm 1.4, BABAR$ 3.6σ and 3.5σ $\frac{\mathcal{B}[X(3872) \rightarrow \gamma \psi(2S)]}{\mathcal{B}[X(3872) \rightarrow \gamma J/\psi]} = 2.31 \pm 0.57$ $3.4 \pm 1.4, BABAR$ 3.6σ and 3.5σ $2.46 \pm 0.64 \pm 0.29, LHCb$ 5.5σ and 0.4σ $2.46 \pm 0.64 \pm 0.29, LHCb$ $> 8\sigma$ and 4.4σ

Also

$$\frac{\mathcal{B}[X(3872) \to \gamma J/\psi]}{\mathcal{B}[X(3872) \to \pi^+ \pi^- J/\psi]} = 0.24 \pm 0.05$$

 $\sim 30 X(3872) \rightarrow \gamma J/\psi$ and $\sim 20 X(3872) \rightarrow \gamma \psi(2S)$ events expected on BESIII

A good test for the existing measurements!

QWG 2019, Junhao Yin

Datasets and decay chain

$V(2072) \rightarrow D(\overline{D}*0)$	\sqrt{s} GeV	Luminosity (pb^{-1})
$X(38/2) \rightarrow D^{\circ}D^{\circ \circ} + C.C.$	4.1783	3189.0
$D^{*0} \rightarrow \gamma D^0, \pi^0 D^0$	4.1888	521.9
$D^{\circ} \to K\pi, K\pi\pi, K\pi\pi\pi$ $X(3872) \to \gamma I/\psi$	4.1989	523.7
	4.2092	511.2
$J/\psi ightarrow \mu\mu/ee$	4.2187	508.2
$X(3872) \rightarrow \nu \psi(3686)$	4.2263	1092
	4.2357	528.9
$\psi(3686) \rightarrow \pi^+\pi^- J/\psi$	4.2438	532.7
$\psi(3686) \rightarrow \mu\mu$	4.2580	826
$X(3872) \rightarrow \gamma D^+ D^-$	4.2668	529.3
	4.2777	174.5
$D^{\pm} \rightarrow K\pi\pi, K\pi\pi\pi$		

Study of $X(3872) \rightarrow \gamma J/\psi, \gamma \psi(3686)$

Requirement:

 $cos \theta_{\gamma} \in [-0.7, \ 0.7] \text{ in } J/\psi \to e^+e^ |M(\gamma_L \gamma_H) - m_{\pi^0(\eta)}| > 0.02(0.03) \text{ GeV/c}^2$ $|M(\gamma_L J/\psi) - m_{\chi_{c1,2}}| > 0.02 \text{ GeV/c}^2$

Simultaneous fit; significance > 3.5σ

Requirement:

$$|M(\gamma_L \gamma_H) - m_{\pi^0(\eta)}| > 0.02(0.03) \text{ GeV/c}^2$$
$$|M(\pi^+ \pi^-)_{recoil} - m_{\psi(3686)}| > 0.01 \text{ GeV/c}^2$$

Simultaneous fit; no evident signal

 $\frac{B[X(3872) \to \gamma \psi(3686)]}{B[X(3872) \to \gamma J/\psi]} < 0.59 \text{ at } 90\% \text{ C.L.}$

Study of $X(3872) \rightarrow D^0 \overline{D}^{*0}$ and $\gamma D^+ D^-$

Simultaneous fit on $D^{*0} → γD^0$ and $π^0D^0$ Significance > 7.4σ

No evident signal for γD^+D^-

Summary and outlook

- Great progress achieved recently:
 - New decay mode of X(3872) is observed, $X(3872) \rightarrow \pi^0 \chi_{c1}$
 - First firm observation of $X(3872) \rightarrow \omega J/\psi$
 - More decays are searched and measured
- BESIII provide essential test for the existing measurements
- BESIII is taking more data

Back up

Background suppression

- π^0/η suppression
 - In decays with two photons in final states
 - $|M(\gamma_L \gamma_H) m_{\pi^0}| > 0.02 \text{ GeV/c}^2$, $|M(\gamma_L \gamma_H) m_{\eta}| > 0.03 \text{ GeV/c}^2$
- $X(3872) \rightarrow \gamma J/\psi$
 - $cos\theta_{\gamma} \in [-0.7, \ 0.7]$ in $J/\psi \rightarrow e^+e^-$
 - $|M(\gamma_L J/\psi) m_{\chi_{c1,2}}| > 0.02 \text{ GeV/c}^2$
- $X(3872) \rightarrow \gamma \psi(3686)$
 - $|M(\pi^+\pi^-)_{recoil} m_{\psi(3686)}| > 0.01 \text{ GeV/c}^2$

Calculating the upper limits of the relative ratios

- In calculating the relative ratios, the statistical uncertainty of both denominator and numerator must be considered.
 - For example, in calculating the $\frac{B[X(3872) \rightarrow \gamma J/\psi]}{B[X(3872) \rightarrow \gamma \psi(3686)]}$, we sampling the likelihood distribution for $\gamma J/\psi$ and $\gamma \psi(3686)$ mode randomly.
 - After thousands of sampling, the likelihood distribution of the ratio could be obtained, in which the statistical uncertainties from both channels are considered.
 - Then a Gaussian presented the systematic uncertainty is smeared on the distribution.
 - Thus the new distribution would be the distribution of the ratio considering the statistical and systematic uncertainties.