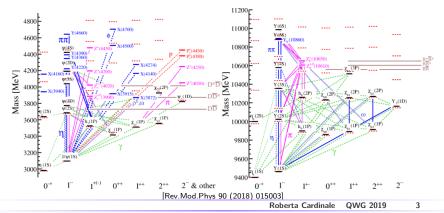


Observation of a new charmonium and evidence of a new charged charmonium-like state at LHCb

Roberta Cardinale on behalf of the LHCb collaboration

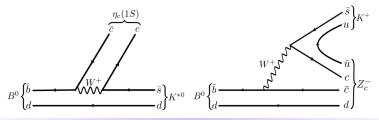

> QWG 2019 Torino - 13 -17 May 2019

Heavy flavour spectroscopy at LHCb

- Thanks to the large centre-of-mass energy, LHC provides a large amount of $b\bar{b}$ and $c\bar{c}$ pairs
 - $\sim 10^{11} b \bar{b} / {
 m yr}$ in forward region
 - 20 times more for $c\bar{c}$
- Important as tests and inputs to QCD models
 - Various theoretical models make predictions on the heavy hadron production and properties
 - New states/decays provide inputs to theory
 - Many observed states still lack of interpretation: exotic states which are not fitting the standard picture

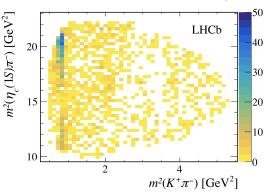
Exotic spectroscopy

- The observation of states with properties inconsistent with pure $c\bar{c}$ and $b\bar{b}$ states raised the interest of the so-called exotic (non-standard) quarkonium states from both the theoretical and experimental point of view starting from the discovery of the X(3872) state
- Since then, a plethora of unexpected neutral (X, Y) and charged (Z⁺, P⁺_c) states have been discovered
- The nature and the internal structure of these states are still unclear (molecular/tightly bound): many efforts needed to uncover their nature



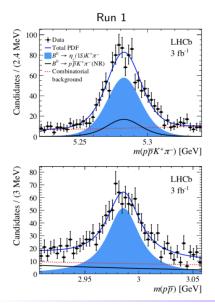
Evidence for an $\eta_c(1S)\pi^-$ resonance in $B^0 \to \eta_c(1S)K^+\pi^-$ decays EPJC 78 (2018) 1019

$\eta_c \pi^-$ resonance in $B^0 \to \eta_c K^+ \pi^-$: motivations


- Predictions of $\eta_c \pi^-$ states depending on the model used to describe the $Z_c(3900)^-$ discovered by BESIII [PRL 110 (2013) 252001]
 - hadrocharmonium state: charged charmonium-like state of mass $\sim 3800\,{
 m MeV}$ [PRD87 (2013) 091501]
 - quarkonium hybrids: prediction of states with quantum numbers allowing the decay into the $\eta_c\pi^-$ system
- Using the diquark model: a $J^P = 0^+$ exotic candidate below the open-charm threshold decaying to $\eta_c \pi^-$ [PRD71 (2005) 014028]

Search for possible exotic states in the $\eta_c \pi^-$ invariant mass using $B^0 \to \eta_c K^+ \pi^-$ decays

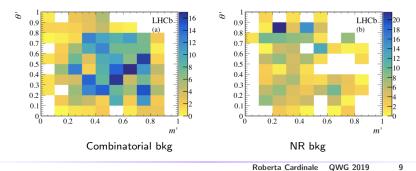
$B^0 o \eta_c(1S) K^+ \pi^-$: analysis strategy [EPJC 78 (2018) 1019]


- Using $L \sim 4.7 \, {\rm fb^{-1}}$, Run1+Run2 data (2011-2016)
- η_c reconstructed in $p\bar{p}$ final state (fully hadronic mode thanks to the excellent performance of the charged hadron identification by the RICH detectors)
- Isolate $B^0 \rightarrow \eta_c K^+ \pi^-$ signal candidates from non-resonant $B^0 \rightarrow p \bar{p} K^+ \pi^-$ and combinatorial background candidates
- Perform a Dalitz plot (DP) analysis to search for exotic hadrons

Dalitz analysis strategy [EPJC 78 (2018) 1019]

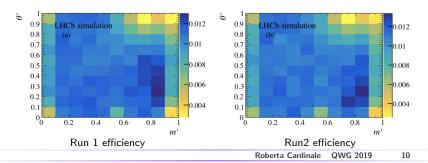
- The $B^0 \rightarrow \eta_c(1S)K^+\pi^-$ decay involves only pseudo-scalar particles: fully described by only two independent kinematic quantities $[m^2(K^+\pi^-), m^2(\eta_c\pi^-)]$
- Dalitz plot analysis using the Laura++ package
- Sizeable natural width of the η_c meson [(32.0 \pm 0.8) MeV]:
 - Kinematic quantities $(m^2(K^+\pi^-), m^2(\eta_c\pi^-) + \text{helicity angles})$ calculated using the $m(p\bar{p})$ instead of the known value of the η_c mass
 - Natural width of the η_c is set to zero when computing the DP normalisation (taken into account in the systematic uncertainties)
- Isobar model used to write the decay amplitude: $K^+\pi^-$ S-wave at low mass $(m(K^+\pi^-) \lesssim 1.7 \, {\rm GeV})$ parametrised using the LASS PDF, Breit Wigner PDFs for the other $K^+\pi^-$ resonances
- Run1 and Run2 subsamples fitted simoultaneously using the JFIT framework: free parameters are in common, signal and background yields and the efficiency maps are different between the two subsamples

$B^0 o \eta_c(1S) K^+ \pi^-$: signal [EPJC 78 (2018) 1019]


- 2D fit to $m(p\bar{p}K^+\pi^-)$ and $m(p\bar{p})$ distributions
- to subtract non-resonant $B^0 \to p \bar{p} K^+ \pi^-$ and combinatorial background candidates
- fitting separately Run1 and Run2 data
- D^0 and Λ_c^+ vetoes

Component	$\operatorname{Run}1$	$\operatorname{Run} 2$
$B^{0} \rightarrow \eta_{c} K^{+} \pi^{-}$ $B^{0} \rightarrow p \overline{p} K^{+} \pi^{-} \text{ (NR)}$ $C = m h m c t with b a degree at the second se$	805 ± 48 234 ± 48 400 ± 26	1065 ± 56 273 ± 56
Combinatorial background	409 ± 36	498 ± 41

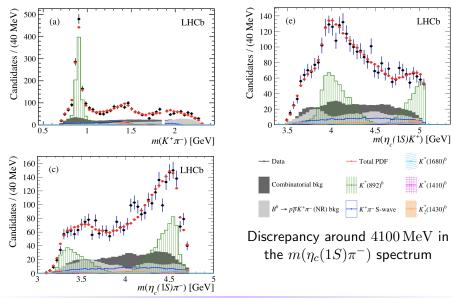
Dalitz analysis strategy: background [EPJC 78 (2018) 1019]


Background parametrisation

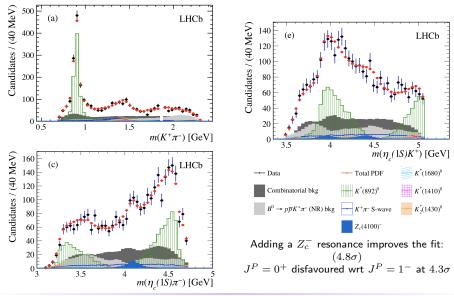
- sPlot technique from the joint 2D $m(p\bar{p}K^+\pi^-), m(p\bar{p})$ fit is used to extract combinatorial and nonresonant background histograms (which are then included in the amplitude fit)
- Histograms are built using the Square Dalitz plot (SDP) in order to avoid artefacts related to the curved boundaries of the DP
- Smoothing procedure applying a 2D cubic spline interpolation

Dalitz plot analysis: efficiency [EPJC 78 (2018) 1019]

- Efficiency variation across the SDP caused by the detector acceptance and the (trigger, offline) selection procedure
- Evaluated with simulated samples generated uniformly across the SDP
- Reweighting procedure to take into account known differences between data and simulation
- Efficiency studied separately for the Run1 and Run2 subsamples
- Smoothing procedure using a 2D cubic spline interpolation


Dalitz plot analysis: contributions [EPJC 78 (2018) 1019]

- Non-exotic contributions from K^* resonances with $m(K^*) \lesssim m(B^0) m(\eta_c)$
- Only amplitudes giving significant improvements in the description of the data are retained
- Baseline model includes 6 K^{*0} resonances


Resonance	Mass [MeV]	Width $[MeV]$	J^P	Model
$K^{*}(892)^{0}$	895.55 ± 0.20	47.3 ± 0.5	1^{-}	RBW
$K^*(1410)^0$	1414 ± 15	232 ± 21	1^{-}	RBW
$K_0^*(1430)^0$	1425 ± 50	270 ± 80	0^{+}	LASS
$K_2^*(1430)^0$	1432.4 ± 1.3	109 ± 5	2^{+}	RBW
$K^*(1680)^0$	1717 ± 27	322 ± 110	1^{-}	RBW
$K_0^*(1950)^0$	1945 ± 22	201 ± 90	0^+	RBW

• + low mass $K^+\pi^-$ S-wave

Model with only $K^+\pi^-$ contributions [EPJC 78 (2018) 1019]

Model with $K^+\pi^-$ + $\eta_c(1S)\pi^-$ [EPJC 78 (2018) 1019]

Roberta Cardinale QWG 2019 13

Systematic uncertainties

Experimental uncertainties

- Fixed signal and background yields
- Background parametrisation
- Phase-space border veto applied on the parametrisation of the efficiencies
- Efficiency variations across the SDP
- Amplitude fit bias

- Model uncertainties
 - treatment of the $\eta_c(1S)$ natural width
 - $K^+\pi^-$ S-wave parametrisation
 - Fixed parameters of the resonances
 - Addition or removal of marginal components
- The systematic variations producing the largest deviations on the $Z_c(4100)$ parameters (mass, width and fit fraction) are used to evaluate the systematic effects on the significances

$Z_c(4100)$	significance	including	systematic
uncertainti	es and correl	ations: 3.2	σ

Source	$\Delta(-2\ln\mathcal{L})$	Significance
Nominal fit	41.4	4.8σ
Fixed yields	45.8	5.2σ
Phase-space border veto	44.6	5.1σ
η_c width	36.6	4.3σ
$K^+\pi^-$ S-wave	31.8	3.9σ
Background	27.4	3.4σ

Discrimination between $J^P=0^+$ and $J^P=1^-$ is not significant

Source	$\Delta(-2\ln\mathcal{L})$	Significance
Default	18.6	4.3σ
Fixed yields	23.8	4.9σ
Phase-space border veto	24.4	4.9σ
η_c width	4.2	2.0σ
Background	3.4	1.8σ
$K^+\pi^-$ S-wave	1.4	1.2σ

Cross-checks

• No significant improvement adding further high-mass K^{*0} states

- the $K^{\ast}_{3}(1780)^{0}$ and $K^{\ast}_{4}(2045)^{0}$ states
- the high mass $K_5^*(2380)^0$ which falls outside the phase space limits
- the $K_2^*(1980)^0$ which has not been seen in the $K^+\pi^-$ final state thus far
- the unestablished P-, D- and F-wave $K^+\pi^-$ states predicted by the Godfrey-Isgur model
- No significant additional amplitude decaying to $\eta_c \pi^-$
- No significant additional exotic amplitude decaying to $\eta_c K^+$
- Negligible effect due to the η_c meson resonant phase motion due to the sizeable natural width introducing interference effects with the NR $p\bar{p}$ contribution
 - $\bullet\,$ data sample is divided in two, containing candidates with masses below and above the η_c meson peak

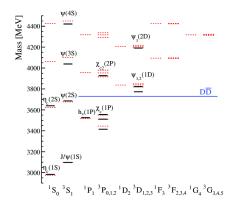
Evidence for an exotic $Z_c(4100)^{-}$ [EPJC 78 (2018) 1019]

- Resonance parameters: ۰ $m_{z^-} = 4096 \pm 20^{+18}_{-22} \,\mathrm{MeV}$ $\Gamma_{z^-} = 152 \pm 58^{+60}_{-35} \,\mathrm{MeV}$
- Fit fraction of the $Z_c^-: 3.3 \pm 1.1^{+1.2}_{-1.1}\%$ ٥
- Significance is 3.2σ after considering systematic uncertainties ٠
- Discrimination between $J^P = 0^+$ and $J^P = 1^-$ is not significant 0
- Need more data to conclusively determine the nature of the $Z_c(4100)$ state ۲

Decay mode	Branching fraction (10^{-5})		
$B^0 \to \eta_c K^* (892)^0$	$29.5 \pm 1.6 \pm 0.6 {+1.0 \atop -2.8} \pm 3.4$		
$B^0 \rightarrow \eta_c K^* (1410)^0$	$1.20 \pm 0.63 \pm 0.02 \pm 0.63 \pm 0.14$		
$B^0 \to \eta_c K^+ \pi^- (\mathrm{NR})$	$5.90 \pm 0.84 \pm 0.11 \begin{array}{c} +0.57 \\ -0.69 \end{array} \pm 0.68$		
$B^0 \to \eta_c K_0^* (1430)^0$	$14.50 \pm 2.10 \pm 0.28 {}^{+2.01}_{-1.60} \pm 1.67$		
$B^0 \to \eta_c K_2^* (1430)^0$	$2.35 \pm 0.87 \pm 0.05 \ ^{+0.57}_{-0.92} \ \pm 0.27$		
$B^0 \to \eta_c K^* (1680)^0$	$1.26 \pm 1.15 \pm 0.02 \stackrel{+0.86}{_{-0.97}} \pm 0.15$		
$B^0 \to \eta_c K_0^* (1950)^0$	$2.18 \pm 1.04 \pm 0.04 {}^{+0.80}_{-1.43} \pm 0.25$		
$B^0 \to Z_c(4100)^- K^+$	$1.89 \pm 0.64 \pm 0.04 \ ^{+0.69}_{-0.63} \ \pm 0.22$		

(statistical, branching fraction systematic, fit fraction systematic, external branching fractions uncertainties)

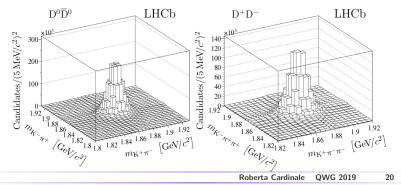
Roberta Cardinale


QWG 2019

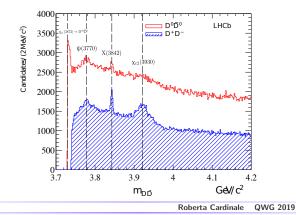
16

Standard spectroscopy

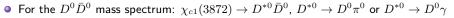
Near-threshold $D\bar{D}$ spectroscopy and observation of a new charmonium state arXiv: 1903.12240, submitted to JHEP

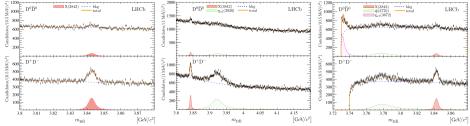

Charmonium spectrum status

- Charmonium spectrum and properties well described by potential models
- A lot of not yet observed states above the $D\bar{D}$ threshold
- Only few states with large *L* states known
- \$\psi_3(1^3D_3)\$ state not yet discovered: expected to be narrow since even if it is above \$D\overline{D}\$ threshold, the decay is suppressed due to the \$F\$-wave centrifugal barrier factor
- Mass predictions: 3815-3863 MeV
- Width predictions: $1-2 \,\mathrm{MeV}$


New charmonium in $D\bar{D}$ [arXiv: 1903.12240]

- Run1 + Run2 data: $9 \, \mathrm{fb}^{-1}$: first analysis using the complete dataset!
- Select promptly produced D^+D^- and $D^0\bar{D}^0$ candidates
- ${\small \bullet}~~{\rm Using}~D^+ \rightarrow K^-\pi^+\pi^+$ and $D^0 \rightarrow K^-\pi^+$
- To reduce combinatorial background, exploit D meson decay time
- Select only D candidates with mass within $\pm 20\,{\rm MeV}$ (approximately $\pm 3\sigma)$ of the known D-meson
- Purity: 88% for $D^0 \overline{D}{}^0$ and 83% for the $D^+ D^-$


$D\bar{D}$ spectra [arXiv: 1903.12240]


- ${\ensuremath{\, \bullet }}$ To improve $D\bar{D}$ resolution: D mass constrained to the known values
- To better model background, fits performed in three different overlapping mass regions
 - Narrow region around a new state: X(3842): $3.80 < m_{D\bar{D}} < 3.88 \,\text{GeV}$
 - High-mass region: $3.80 < m_{D\bar{D}} < 4.2 \,\mathrm{GeV}$
 - Near-threshold region $m_{D\bar{D}} < 3.88 \,\mathrm{GeV}$

$D\bar{D}$ spectra [arXiv: 1903.12240]

- ${\ }{\ }$ Simultaneous fit to the D^+D^- and the $D^0\bar{D}^0$ spectra
- Relativistic Breit-Wigner convoluted with resolution (from 0.9 to 1.9 MeV) for signal
- Background: pol2/pol2*expo/two-body phase-space*pol2

• X(3842): $m = (3842.71 \pm 0.16 \pm 0.12) \text{ MeV}$ $\Gamma = (2.79 \pm 0.51 \pm 0.35) \text{ MeV}$

- $\psi(3770)$: $m(\psi(3770)) = (3778.1 \pm 0.7 \pm 0.6) \,\text{MeV}$ Γ constrained to $(27.2 \pm 1.0) \,\text{MeV}$ (PDG)
- $\chi_{c2}(3930)$: $m(\chi_{c2}(3930)) = (3921.9 \pm 0.6 \pm 0.2)$ MeV $\Gamma(\chi_{c2}(3930)) = (36.6 \pm 1.9 \pm 0.9)$ MeV

Roberta Cardinale QWG 2019 22

$D\bar{D}$ results [arXiv: 1903.12240]

- New narrow charmonium state: X(3842)
- Most probable interpretation as spin-3 D-wave state $\psi_3(1^3D_3)$ with $J^{PC}=3^{--}$

 $m = 3842.71 \pm 0.16 \pm 0.12 \,\mathrm{MeV}$ $\Gamma = 2.79 \pm 0.51 \pm 0.35 \,\mathrm{MeV}$

• First observation of hadroproduction of $\psi(3770)$ and of $\chi_{c2}(3930)$

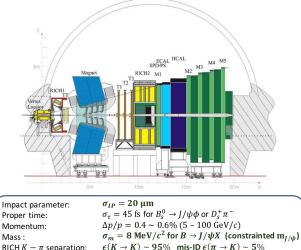
$$m(\psi(3770)) = 3778.1 \pm 0.7 \pm 0.6 \text{ MeV} m(\chi_{c2}(3930)) = 3921.9 \pm 0.6 \pm 0.2 \text{ MeV} \Gamma(\chi_{c2}(3930)) = 36.6 \pm 1.9 \pm 0.9 \text{ MeV}$$

$D\bar{D}$ results [arXiv: 1903.12240]

	$m_{\chi_{c2}(3930)}$ [MeV/ c^2]	$\Gamma_{\chi_{c2}(3930)}$ [MeV]
Belle PRL 96 (2006) 082003	$3929 \pm 5 \pm 2$	$29 \pm 10 \ \pm 2$
BaBar PRD 81 (2010 092003	$3926.7 \pm 2.7 \pm 1.1$	$21.3\pm6.8\pm3.6$
This analysis	$3921.9 \pm 0.6 \pm 0.2$	$36.6\pm1.9\pm0.9$
	r	$n_{\psi(3770)}$ [MeV/ c^2]
Shamov and Tod	${ m yshev}$ plb 769 (2017) 187 37	79.8 ± 0.6
PDG average	37	78.1 ± 1.2
PDG fit	37	73.13 ± 0.35
This analysis	37	$78.1 \pm 0.7 \pm 0.6$

- The mass of the $\chi_{c2}(3930)$ is 2σ lower than the current world average
- The natural width of the $\chi_{c2}(3930)$ is 2σ higher than the current world average
- Mass value is midway between the mass for this state and for the X(3915) meson: two distinct charmonium states in this region or only one? [PRL 115 (2015) 0220001]
- For $\psi(3770)$, mass is compatible with PDG average dominated by KEDR experiment
- Disagreement with the PDG fit value (which includes BES measurement)

24


Conclusions

- A wide range of interesting spectroscopy measurements performed by the LHCb experiment
- Exotic spectroscopy is quite a rich field where LHCb is contributing significantly with the confirmation of already observed states or with the observation of new states
- An overall picture of these states is still missing: experimental effort is needed
- Standard spectroscopy results provide a perfect benchmark for tests of effective theories of the strong interaction
- A lot of states have not observed yet
- Long Shutdown 2 started, the detectors are going to be upgraded: collect a larger data sample with high efficiency starting in 2021!

Spare slides

The LHCb detector

Designed to study CP-violating processes and rare b- and c-hadrons decays

RICH $K - \pi$ separation: Muon ID:

ECAL:

 $\Delta E/E = 1 \oplus 10\% / \sqrt{E(\text{GeV})}$

 $\epsilon(\mu \rightarrow \mu) \sim 97\%$ mis-ID $\epsilon(\pi \rightarrow \mu) \sim 1 - 3\%$

Interpretations of exotic hadrons

• Different models have been proposed about the quark composition and binding mechanisms of these exotic hadrons

Meson-meson molecule Hadro

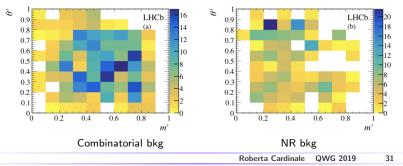
Hadroquarkonium

Glueball

Hybrid meson

Predictions of a $\eta_c \pi^-$ exotic state

- $Z_c(3900)^-$ as hadrocharmonium state (where the compact heavy quark-antiquark pair interacts with the surrounding light quark mesonic excitation by a QCD analogue of the van der Waals force): predicts an as-yet-unobserved charged charmonium-like state with a mass of approximately 3800 MeV whose dominant decay mode is to the $\eta_c \pi^-$ system
- $Z_c(3900)^-$ as quarkonium hybrids where the excitation of the gluon field (the valence gluon) is replaced by an isospin-1 excitation of the gluon and light-quark fields
 - prediction of different multiplets of charmonium tetraquarks, comprising states with quantum numbers allowing the decay into the $\eta_c \pi^-$ system.
 - The $\eta_c \pi^-$ system carries isospin I = 1, G-parity G = 1, spin J = L and parity $P = (-1)^L$, where L is the orbital angular momentum between the η_c and the π^- mesons. Lattice QCD calculations predict the mass and quantum numbers of these states, comprising a $I^G(J^P) = 1(0^+)$ state of mass 4025 ± 49 MeV, a $I^G(J^P) = 1^-(1^-)$ state of mass 3770 ± 42 MeV, and a $I^G(J^P) = 1^-(2^+)$ state of mass 4045 ± 44 MeV. The $Z_c(4430)$ resonance, discovered by the Belle collaboration and confirmed by LHCb, could also fit into this scenario.
- Diquark model: a $J^P=0^+$ exotic candidate below the open-charm threshold decaying to $\eta_c\pi^-$

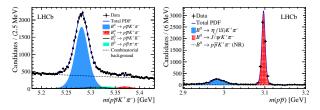

Branchi

Parametrisation of the backgrounds

- SPlot technique from the joint 2D m(pp̄K⁺π[−]), m(pp̄) fit is used to extract combinatorial and NR background histograms
- Smoothing procedure using a 2D cubic spline interpolation
- Parametrised using the Square Dalitz plot (SDP) using the variables $m^{'}$ and $\theta^{'}$ defined in the range 0 to 1 and given by

$$m' \equiv \frac{1}{\pi} \arccos(2\frac{m(K^+\pi^-) - m_{K^+\pi^-}^{\min}}{m_{K^+\pi^-}^{\max} - m_{K^+\pi^-}^{\min}} - 1) \qquad \qquad \theta' \equiv \frac{1}{\pi}\theta(K^+\pi^-)$$

where $m_{K^+\pi^-}^{\max} = m_{B^0} - m_{\eta_c}$, $m_{K^+\pi^-}^{\min} = m_{K^+} + m_{\pi^-}$ and $\theta(K^+\pi^-)$ is the helicity angle of the $K^+\pi^-$ system (the angle between the K^+ and the η_c mesons in the $K^+\pi^-$ rest frame

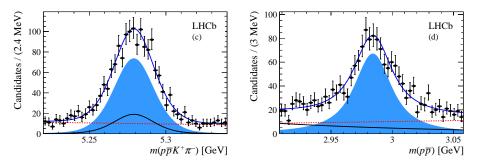

Quasi-two-body branching fractions

Amplitude	Fit fraction $(\%)$
$B^0 \rightarrow \eta_c K^*(892)^0$	$51.4 \pm 1.9 {}^{+1.7}_{-4.8}$
$B^0 \to \eta_c K^* (1410)^0$	$2.1 \pm 1.1 \stackrel{+1.1}{_{-1.1}}$
$B^0 \to \eta_c K^+ \pi^- (\text{NR})$	$10.3 \pm 1.4 \ ^{+1.0}_{-1.2}$
$B^0 \to \eta_c K_0^* (1430)^0$	$25.3 \pm 3.5 \ {}^{+3.5}_{-2.8}$
$B^0 \to \eta_c K_2^* (1430)^0$	$4.1 \pm 1.5 {}^{+1.0}_{-1.6}$
$B^0 \rightarrow \eta_c K^* (1680)^0$	$2.2 \pm 2.0 \stackrel{+1.5}{_{-1.7}}$
$B^0 \to \eta_c K_0^* (1950)^0$	$3.8 \pm 1.8 \ ^{+1.4}_{-2.5}$
$B^0 \rightarrow Z_c(4100)^- K^+$	$3.3 \pm 1.1 {}^{+1.2}_{-1.1}$

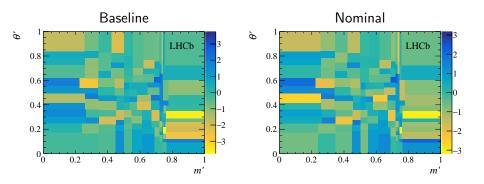
Decay mode	Branching fraction (10^{-5})		
$B^0 \to \eta_c K^*(892)^0$	$29.5 \pm 1.6 \pm 0.6 \ ^{+1.0}_{-2.8} \ \pm 3.4$		
$B^0 \rightarrow \eta_c K^* (1410)^0$	$1.20 \pm 0.63 \pm 0.02 \pm 0.63 \pm 0.14$		
$B^0 \to \eta_c K^+ \pi^- (\text{NR})$	$5.90 \pm 0.84 \pm 0.11 \begin{array}{c} +0.57 \\ -0.69 \end{array} \pm 0.68$		
$B^0 \to \eta_c K_0^* (1430)^0$	$14.50 \pm 2.10 \pm 0.28 {}^{+2.01}_{-1.60} \pm 1.67$		
$B^0 \to \eta_c K_2^* (1430)^0$	$2.35 \pm 0.87 \pm 0.05 \ ^{+0.57}_{-0.92} \ \pm 0.27$		
$B^0 \rightarrow \eta_c K^* (1680)^0$	$1.26 \pm 1.15 \pm 0.02 \ ^{+0.86}_{-0.97} \ \pm 0.15$		
$B^0 \to \eta_c K_0^* (1950)^0$	$2.18 \pm 1.04 \pm 0.04 \ ^{+0.80}_{-1.43} \ \pm 0.25$		
$B^0 \rightarrow Z_c(4100)^- K^+$	$1.89 \pm 0.64 \pm 0.04 \ ^{+0.69}_{-0.63} \ \pm 0.22$		

Branching fraction measurement

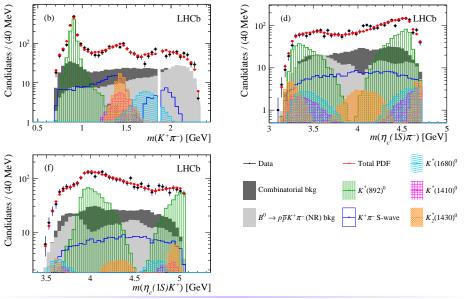
- Measurement of the $B^0 \rightarrow \eta_c \bar{K}^+ \pi^-$ wrt $B^0 \rightarrow J/\psi K^+ \pi^-$ (normalisation channel) $R = \frac{N_{\eta_c}}{N_{J/\psi}} \times \frac{\epsilon_{J/\psi}}{\epsilon_{\eta_c}}$
- Two-stage procedure:
 - Fit to the $m(p\bar{p}K^+\pi^-)$ to separate $B^0\to p\bar{p}K^+\pi^-$ from background contributions
 - Fit to the sPlot weighted $m(p\bar{p})$ distribution to extract η_c , J/ψ and nonresonant contributions

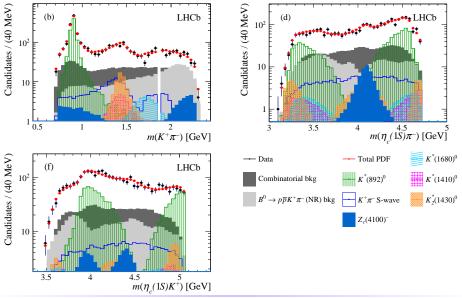


- Ratio of efficiencies between signal and normalization channel expected to be close to unity: evaluated using simulated samples reweighted using calibration samples
- Systematic uncertainties due to fit model and due to effect of efficiency variation


$$\begin{split} R &= 0.357 \pm 0.015 \pm 0.008 \\ \mathcal{B}(B^0 \to \eta_c K^+ \pi^-) &= (5.73 \pm 0.24 \pm 0.13 \pm 0.66) \times 10^{-4} \end{split}$$

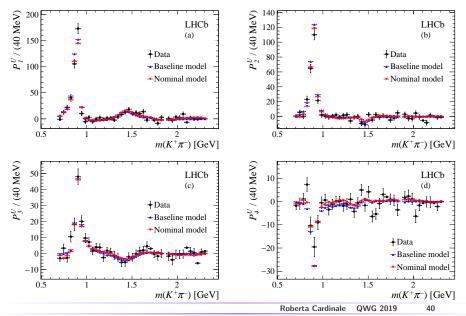
Roberta Cardinale QWG 2019 33


Run-2 signal

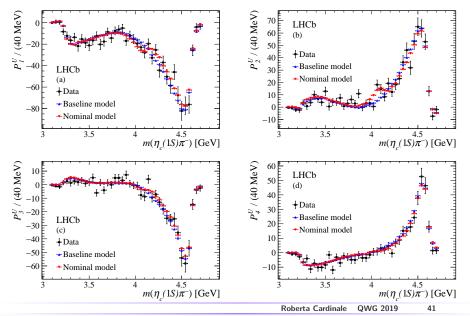

Fit quality: 2D pull

Baseline: log

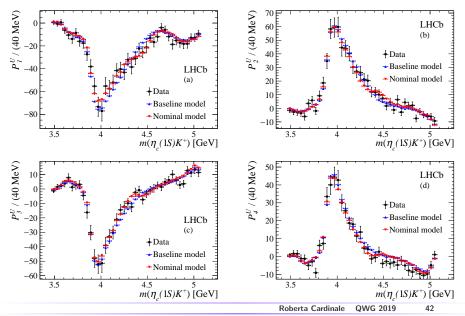
Nominal: log



$Z_c(4100)^-$ significance


Fit fractions

	$K^{*}(892)^{0}$	$K^{*}(1410)^{0}$	LASS NR	$K_0^*(1430)^0$	$K_2^*(1430)^0$	$K^{*}(1680)^{0}$	$K_0^*(1950)^0$	$Z_c(4100)^-$
$K^{*}(892)^{0}$	$51.4 \pm 1.9 \substack{+1.7 \\ -4.8}$	$1.7 \pm 1.9 {}^{+2.4}_{-1.4}$	0	0	0	$-2.1 \pm 1.1 \stackrel{+1.4}{_{-1.5}}$	0	$1.4 \pm 1.0 \stackrel{+1.2}{_{-1.1}}$
$K^{*}(1410)^{0}$		$2.1 \pm 1.1 \stackrel{+1.1}{_{-1.1}}$	0	0	0	$-2.5 \pm 1.6 {}^{+1.9}_{-1.7}$	0	$-0.4 \pm 0.4 \substack{+0.7 \\ -0.5}$
LASS NR			$10.3 \pm 1.4 \ ^{+1.0}_{-1.2}$	$-5.8 \pm 1.3 \ ^{+2.2}_{-2.0}$	0	0	$-3.2 \pm 2.8 \stackrel{+4.9}{_{-1.4}}$	$1.11 \pm 0.23 \stackrel{+0.4}{_{-0.3}}$
$K_0^*(1430)^0$				$25.3 \pm 3.5 {}^{+3.5}_{-2.8}$	0	0	$4.7 \pm 0.7 {}^{+1.3}_{-1.5}$	$2.8 \pm 0.4 {}^{+0.6}_{-0.4}$
$K_2^*(1430)^0$					$4.1 \pm 1.5 {}^{+1.0}_{-1.6}$	0	0	$0.00 \pm 0.31 \stackrel{+0.7}{_{-0.2}}$
$K^{*}(1680)^{0}$						$2.2 \pm 2.0 \stackrel{+1.5}{_{-1.7}}$	0	$0.7 \pm 0.5 \substack{+0.5 \\ -0.9}$
$K_0^*(1950)^0$							$3.8 \pm 1.8 \ ^{+1.4}_{-2.5}$	$0.6 \pm 0.5 \ ^{+0.8}_{-1.1}$
$Z_c(4100)^-$								$3.3 \pm 1.1 \stackrel{+1.2}{_{-1.1}}$


$K^+\pi^-$ Legendre moments

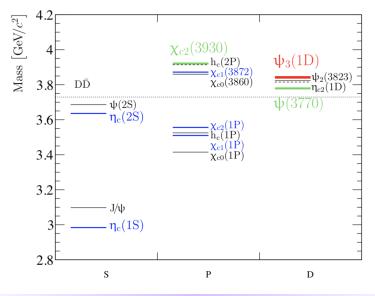
$\eta_c \pi^-$ Legendre moments

$\eta_c K^+$ Legendre moments

Width of the $\eta_c(1S)$

- Necessary to take into account the sizeable natural width of the $\eta_c(1S)$ meson ($\Gamma \sim 32 \,\mathrm{MeV}$):
 - Kinematic quantities such as $m^2(K^+\pi^-)$, $m^2(\eta_c\pi^-)$ and the helicity ancles are calculated using the invariant mass $m(p\bar{p})$ instead of the known value of the η_c mass
 - When computing the DP normalisation the width of the η_c meson is set to zero: the effect of this simplification is determined when assessing the systematic uncertainties
 - Amplitude fits are repeated computing the DP normalisations by using the $m_{\eta_c}+\Gamma_{\eta_c}$ and $m_{\eta_c}-\Gamma_{\eta_c}$

LASS model


- The amplitude parametrisations using RBW functions lead to unitarity violation within the isobar model if there are overlapping resonances or if there is a significant interference with a NR component, both in the same partial wave
- For the $K^+\pi$ S-wave at low $K^+\pi$ mass, where the $K_0(1430)^0$ resonance interferes strongly with a slowly varying NR S-wave component: LASS lineshape

$$T(m) = \frac{m}{|\vec{q}| \cot \delta_B - i|\vec{q}|} + e^{2i\delta_B} \frac{m_0 \Gamma_0 \frac{m_0}{q_0}}{m_0^2 - m^2 - im_0 \Gamma_0 \frac{|\vec{q}|}{m} \frac{m_0}{q_0}}$$
$$\cot \delta_B = \frac{1}{a|\vec{q}|} + \frac{1}{2}r|\vec{q}|$$

and where m_0 and Γ_0 are the pole mass and width of the $K_0(1430)^0$ state, and a and r are the scattering length and the effective range, respectively.

• The LASS model replaced with $K_0^*(1430)^0$ and $K_0^*(800)^0$ resonances parametrised with RBW functions, and a NR S-wave $K^+\pi^-$ component parametrised with a uniform amplitude within the DP.

Charmonium spectrum

