

中國科學院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

VECTOR CHARMONIUM AND CHARMONIUMLIKE STATES AT BESIII

Bin Wang (on behalf of BESIII Collaboration) Institute of High energy Physics, CAS wangbin@ihep.ac.cn

Quarkonium 2019 www.qwg.to.infn.it XIII International Workshop on Heavy Quarkonium

Outline

- > Introduction
 - Charmonium and charmoniumlike spectrum
 - ➢ BEPCII and BESIII
 - ➢ BESIII data samples
- Recent results at BESIII
- Summary and Outlook

Charmonium and charmoniumlike spectrum

Below open-charm threshold

- ✓ Good agreement between experimental measurements and theoretical predictions
- > Above open-charm threshold
- Many expected states not discovered

Charmonium and charmoniumlike <u>Y(460)</u> Spectrum

>Below open-charm threshold

- ✓ Good agreement between experimental measurements and theoretical predictions
- > Above open-charm threshold
- Many expected states not discovered
- Many unexpected states observed:
 - charmonium final states
 - no conventional charmonium states assignment
 - called charmonium-like or XYZ states
 - "X" states: Neutral, J^{PC} ≠ 1⁻⁻, Observed in radiation or hadronic transitions from charmonium(-like) states. Junhao's presentation.
 - "Y" states: Neutral, $J^{PC} = 1^{--}$, Observed in e^+e^- annihilation.
 - "Z" states: Charged, isospin triplet, observed in hadronic transitions from charmonium(-like) states. Ronggang's presentation.

The Y states

Searching for new decay modes of known charmonium(-like) states and new charmoniumlike

states are necessary to give a decisive conclusion.

BESIII data Samples

200/pb around X(3872)

6

Most precise cross section measurement for center-of-mass energy from 3.77 to 4.60 GeV;
 Fit I = |BW₁+BW₂*e^{iφ2}+BW₃*e^{iφ3}|² or Fit II =|exp+BW₂*e^{iφ2}+BW₃*e^{iφ3}|² (other fits ruled out);
 Compare with one Breit-Wigner fit, the significance of the second Breit-Wigner is 7.6σ;

> Y(4260) + Y(4260)	360)? The first of	observation of Y($(4360) \to \pi^+ \pi^- J/2$	ψ.

	R_1	R_2	Y(4260) [PDG2016]	Y(4360) [PDG2016]
M (MeV/ c^2)	$4222.0 \pm 3.1 \pm 1.4$	4320.0±10.4±7.0	4251±9	4346 <u>+</u> 6
$\Gamma_{\rm tot}$ (MeV)	$44.1 \pm 4.3 \pm 2.0$	$101.4^{+25.3}_{-19.7}\pm10.2$	120 <u>±</u> 12	102 ± 10

≻First precise cross section measurement from threshold to 4.6 GeV;

Fit with $|BW_1+BW_2*e^{i\phi}|^2$, two resonant structures are evident;

>Compare with one Breit-Wigner fit, the significance of the two Breit-Wigner fit is greater than 10σ ;

The parameters of Y(4220) are consistent with those observed in $\pi^+\pi^- J/\psi$ around 4222 MeV.

	M (MeV/c ²)	Γ_{tot} (MeV)
<i>Y</i> (4220)	$4218.4^{+5.5}_{-4.5}\pm0.9$	$66.0^{+12.3}_{-8.3}\pm0.4$
Y(4390)	$4391.5^{+6.3}_{-6.8}\pm1.0$	$139.5^{+16.2}_{-20.6} \pm 0.6$

➤ Most precise cross section measurement for center-of-mass energy from 4.05 to 4.60 GeV;

- Fit with a coherent sum of three-body phase space term (pink dashed triple-dot line) and two Breit-Wigner functions (green dashed double-dot line and aqua dashed line);
- > The statistical significance of two resonant assumption over one resonant assumption is greater than 10σ ;
- \succ M(Y(4220)) = (4228.6±4.1±6.3) MeV/c², Γ(Y(4220)) = (77.0±6.8±6.3) MeV.

 $e^+e^- \rightarrow \pi^0\pi^0\psi(3686)$

Y(4360) was observed and subsequently confirmed in e⁺e⁻ → (γ_{ISR})π⁺π⁻ψ(3686) by BABAR, Belle, and BESIII, it is interesting to study the Y(4360) in π⁰π⁰ transition to ψ(3686) and to examine the isospin symmetry;

- Signal process: $e^+e^- \rightarrow \pi^0\pi^0\psi(3686), \psi(3686) \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \ell^+\ell^- (\ell = e \text{ or } \mu);$
- > 16 energy points from $\sqrt{s} = 4.008$ to 4.600 GeV, the total luminosity is about 5.2 fb⁻¹;
- > The result of cross section measurement is consistent with the charged mode from isospin symmetry.

- > Only $\omega \chi_{c0}$ has significant signal;
- > The cross section is fitted with coherent sum of a Breit-Wigner and a phase space term.

 $e^+e^- \rightarrow \omega \chi_{c0}$

 $\Gamma = (28.2.0 \pm 3.9 \pm 1.6) \text{ MeV}$

> This observation confirms and improves the previous result;

Further experimental studies with higher statistics are needed to draw a more reliable conclusion on the nature of this structure.

$e^+e^- \to \phi \chi_{cJ}$

- ► BESIII has measured the cross section of $e^+e^- \rightarrow \omega \chi_{c0}$ and observed an intermediate resonance around 4226 MeV/c2.
- > Considering that ω and ϕ have the same spin, parity, and isospin, $\omega \chi_{cI}$ and $\phi \chi_{cI}$ may have a similar production mechanism.
- We study the $e^+e^- \rightarrow \phi \chi_{c0,1,2}$ at $\sqrt{s} = 4.60$ GeV (567 pb⁻¹), where $\chi_{c0} \rightarrow \pi^+\pi^-, K^+K^-, K^+K^-\pi^+\pi^-$, and $\pi^+\pi^-\pi^+\pi^-$, $\chi_{c1,2} \rightarrow \gamma J/\psi, J/\psi \rightarrow \ell^+\ell^-$ ($\ell = e \text{ or } \mu$), and $\phi \rightarrow K^+K^-$.
- ► BESIII has searched for the Y(4140) in the process of $e^+e^- \rightarrow \gamma \phi J/\psi$ with data samples at c.m. energies $\sqrt{s} = 4.23$, 42.6, and 4.36 GeV, but no obvious signal has been observed. We also can repeat this analysis at $\sqrt{s} = 4.60$ GeV.

▶ No obvious $e^+e^- \rightarrow \phi \chi_{c0}$ signals are observed, the production $\sigma(e^+e^- \rightarrow \phi \chi_{c0}) < 5.4$ pb @ 90% C.L.;

- ► The first observation of $e^+e^- \rightarrow \phi \chi_{c1}$ and $\phi \chi_{c2}$, $\sigma(e^+e^- \rightarrow \phi \chi_{c1}) = 4.2^{+1.7}_{-1.0}$ pb and $\sigma(e^+e^- \rightarrow \phi \chi_{c2}) = 6.7^{+3.4}_{-1.7}$ pb;
- No obvious $e^+e^- \rightarrow \gamma Y(4140)$ signals are observed, $\sigma(e^+e^- \rightarrow \gamma Y(4140)) \times \mathcal{B}(Y(4140) \rightarrow \phi J/\psi) <$ 1.2 pb @ 90% C.L..

- ► Measure the cross section of $e^+e^- \rightarrow K\overline{K}J/\psi$ at c.m. energies from 4.189 to 4.600 GeV.
- ➤ The energy dependence of the cross section for $e^+e^- \rightarrow K^+K^-J/\psi$ is shown to differ from that for $\pi^+\pi^-J/\psi$ in the region around the Y(4260);
- ➤ The ratio of cross sections for $e^+e^- \to K^+K^-J/\psi$ and $e^+e^- \to K_S^0K_S^0J/\psi$ is consistent with expectations from isospin conservation.

► We observe $e^+e^- \rightarrow \pi^+\pi^-\psi(3770)$ for the first time at 4.42 GeV;

 \blacktriangleright There are hints for peaks at 4.04 and 4.13 GeV/c² at 4.42 GeV, while the statistical significance is low.

Three different decay channels $(D^0\pi^+\pi^-, D^{*+}\pi^-, \text{ and } D^+\pi^+\pi^-)$ are used to search for $D_1(2420)$, the neutral mode with $D_1(2420)^0 \rightarrow D^0\pi^+\pi^-$ is reported with statistical significance of 7.4 σ at 4.42 GeV. 17

The Y(4390) or the ψ (4415) resonance or from any other resonance cannot be distinguished based on the current statistics.

Summary & Outlook

Parameters of the Peaks in e⁺e⁻ Cross Sections

Summary & Outlook

- ✓ Recent results on charmonium(-lile) states at BESIII are presented.
- ✓ BESIII is an active and successful experiment for vector charmonium and charmoniumlike spectroscopy.

- Continue to take data and increase the beam energy;
- > Provide more important results in charmonium spectroscopy.

Thank You! 20

backup

Beijing Electron and Positron Collider(BEPCII)

beam energy: 1.0 – 2.3 GeV

BESIII

detector

- 1989-2004 (BEPC): L_{peak}=1.0x10³¹ /cm²s
- 2009-now (BEPCII):
 - L_{peak}=1.0x10³³/cm²s 21

LINAC

CsI(TI) calorimeter, 2.5% @ 1 GeV

Has been in full operation since 2008!