

P-wave heavy quarkonium spectrum

with N³LL accuracy

Clara Peset QWG 2019, 15th May 2019

Based on work in collaboration with A. Pineda, M. Stahlhofen and J. Segovia arxiv:1511.08210, arxiv:1809.09124

1. Motivation and framework

2. Heavy quarkonium at N^3LL

3. Summary and further applications

Motivation and framework

Motivation: Low energy QCD

QCD predicts a tower of resonances of $q\bar{q}$ bound-states

PDG '17

BUT hadronization in a non-perturbative effect

 \Rightarrow exploit \mbox{EFTs} to overcome our limitation in describing low energy QCD

$QCD \stackrel{m_r}{\Longrightarrow} NRQCD \stackrel{m_r\alpha_s}{\Longrightarrow} pNRQCD$

$$\left(i\partial_0 - \frac{\mathbf{p}^2}{2m_r} - V^{(0)}(r)\right)\phi(\mathbf{r}) = 0$$

+ corrections to the potential

pNRQCD. $+ \mbox{ interaction with other low-energy degrees of freedom}$

Pineda, Soto

$\mathsf{QCD} \stackrel{m_r}{\Longrightarrow} \mathsf{NRQCD} \stackrel{m_r \alpha_s}{\Longrightarrow} \mathsf{pNRQCD}$

$$\left(i\partial_0 - \frac{\mathbf{p}^2}{2m_r} - V^{(0)}(\mathbf{r}) \right) \phi(\mathbf{r}) = 0 \\ + \text{ corrections to the potential} \\ + \text{ interaction with other low-energy degrees of freedom} \right\} \text{pNRQCD.}$$

Pineda, Soto '98

The singlet potential

$$V_{s}(\mathbf{p},\mathbf{r}) = V^{(0)}(r) + \frac{V^{(1,0)}(r)}{m_{1}} + \frac{V^{(0,1)}(r)}{m_{2}} + \frac{V^{(2,0)}(\mathbf{p},\mathbf{r})}{m_{1}^{2}} + \frac{V^{(0,2)}(\mathbf{p},\mathbf{r})}{m_{2}^{2}} + \frac{V^{(1,1)}(\mathbf{p},\mathbf{r})}{m_{1}m_{2}}$$

$\mathsf{QCD} \stackrel{m_r}{\Longrightarrow} \mathsf{NRQCD} \stackrel{m_r \alpha_s}{\Longrightarrow} \mathsf{pNRQCD}$

$$\left(i\partial_0 - \frac{\mathbf{p}^2}{2m_r} - \mathbf{V}^{(0)}(\mathbf{r}) \right) \phi(\mathbf{r}) = 0 \\ + \text{ corrections to the potential} \\ + \text{ interaction with other low-energy degrees of freedom} \right\} \text{pNRQCD.}$$

Pineda, Soto '98

The singlet potential $V_s(\mathbf{p}, \mathbf{r}) = V^{(0)}(r) + \frac{V^{(1,0)}(r)}{m_1} + \frac{V^{(0,1)}(r)}{m_2} + \frac{V^{(2,0)}(\mathbf{p}, \mathbf{r})}{m_1^2} + \frac{V^{(0,2)}(\mathbf{p}, \mathbf{r})}{m_2^2} + \frac{V^{(1,1)}(\mathbf{p}, \mathbf{r})}{m_1 m_2}$ N³LL NNLL Nilson coefficients of the EFT: matching and renormalization

scheme dependent

$\mathsf{QCD} \stackrel{m_r}{\Longrightarrow} \mathsf{NRQCD} \stackrel{m_r \alpha_s}{\Longrightarrow} \mathsf{pNRQCD}$

$$\left(i\partial_0 - \frac{\mathbf{p}^2}{2m_r} - V^{(0)}(r) \right) \phi(\mathbf{r}) = 0 \\ + \text{ corrections to the potential} \\ + \text{ interaction with other low-energy degrees of freedom} \right\} \text{pNRQCD.}$$

Pineda, Soto '98

Contribution of US gluons: perturbative for $mv^2 \gg \Lambda_{QCD}$ $\underline{s}^{s} \xrightarrow{s} \frac{s}{ks} \frac{s}{2}$ • known to 2-loops Pineda, '02, '11

Physical systems:Bottomonium (1S): $|\mathbf{p}| \sim m_b v \sim 1.3 \text{ GeV}$ B_c (1S): $|\mathbf{p}| \sim 2m_r v \sim 0.85 \text{ GeV}$ Charmonium (1S): $|\mathbf{p}| \sim m_c v \sim 0.68 \text{ GeV}$

velocity scales with *n* quantum number $|\mathbf{p}|_{(nl)} \sim \frac{|\mathbf{p}|_{(1S)}}{n}$

Refinements to apply our EFT to these systems:

Achieve high orders in PT •

Physical systems:Bottomonium (1S): $|\mathbf{p}| \sim m_b v \sim 1.3 \text{ GeV}$ B_c (1S): $|\mathbf{p}| \sim 2m_r v \sim 0.85 \text{ GeV}$ Charmonium (1S): $|\mathbf{p}| \sim m_c v \sim 0.68 \text{ GeV}$

velocity scales with *n* quantum number $|\mathbf{p}|_{(nl)} \sim \frac{|\mathbf{p}|_{(1S)}}{n}$

Refinements to apply our EFT to these systems:

Achieve high orders in PT: next-to-next-to-next-to 🗸 •

Physical systems:Bottomonium (1S): $|\mathbf{p}| \sim m_b v \sim 1.3 \text{ GeV}$ B_c (1S): $|\mathbf{p}| \sim 2m_r v \sim 0.85 \text{ GeV}$ Charmonium (1S): $|\mathbf{p}| \sim m_c v \sim 0.68 \text{ GeV}$

velocity scales with *n* quantum number $|\mathbf{p}|_{(nl)} \sim \frac{|\mathbf{p}|_{(1S)}}{n}$

Refinements to apply our EFT to these systems:

- Achieve high orders in PT: next-to-next-to-next-to 🗸 •
- Accelerate convergence ۲
 - thershold masses

Physical systems:Bottomonium (1S): $|\mathbf{p}| \sim m_b v \sim 1.3 \text{ GeV}$ B_c (1S): $|\mathbf{p}| \sim 2m_r v \sim 0.85 \text{ GeV}$ Charmonium (1S): $|\mathbf{p}| \sim m_c v \sim 0.68 \text{ GeV}$

velocity scales with *n* quantum number $|\mathbf{p}|_{(nl)} \sim \frac{|\mathbf{p}|_{(1S)}}{n}$

Refinements to apply our EFT to these systems:

- Achieve high orders in PT: next-to-next-to-next-to 🗸 •
- Accelerate convergence ۲
 - thershold masses ✓ Beneke '98, Pineda '98
 - resummation of large logarithms \Rightarrow this talk

Physical systems:Bottomonium (1S): $|\mathbf{p}| \sim m_b v \sim 1.3 \text{ GeV}$ B_c (1S): $|\mathbf{p}| \sim 2m_r v \sim 0.85 \text{ GeV}$ Charmonium (1S): $|\mathbf{p}| \sim m_c v \sim 0.68 \text{ GeV}$

velocity scales with *n* quantum number $|\mathbf{p}|_{(nl)} \sim \frac{|\mathbf{p}|_{(1S)}}{n}$

Refinements to apply our EFT to these systems:

- Achieve high orders in PT: next-to-next-to-next-to 🗸 •
- Accelerate convergence ۲
 - thershold masses ✓ Beneke '98, Pineda '98
 - resummation of large logarithms \Rightarrow this talk
 - alternative computation schemes

(see 1302.3528,1806.05197,1809.09124)

Heavy quarkonium at N³LL

Reference scales:

Hard: $\nu_H \sim m_r$, Soft: $\nu_S \sim m_r \alpha_s$, Ultrasoft: $\nu_{US} \sim m_r \alpha_s^2$

Multiscale computations give rise to large logarithms

e.g.
$$\langle \alpha_s \ln(m_r r) \rangle \sim \alpha_s \ln \frac{\nu_H}{\nu_S} \sim \alpha_s \ln \frac{1}{\alpha_s} \sim \mathcal{O}(1)$$

 \Rightarrow breakdown of power counting

Solution: solve the Renormalization Group Equation to resum large logs

$$\frac{dC(\mu)}{d\ln\mu} = \Gamma C(\mu) \& C(\nu_h) = C_0 \Rightarrow \boxed{C(\nu_S, \nu_H) \sim \frac{\alpha_s(\nu_H)}{\alpha_s(\nu_S)} \sim \sum_n \alpha_s^n \ln^n \frac{\nu_H}{\nu_S}}$$

• QCD:

NRQCD: E, |p|, Λ_{QCD} ≪ ν_S ≪ ν_H ~ m
 ① Soft running & ② Potential running

• pNRQCD:
$$E, \Lambda_{\text{QCD}}, \frac{\mathbf{p}^2}{m} \ll \nu_{US} \ll |\mathbf{p}| \ll \nu_P, \nu_S \ll \nu_H \sim m$$

- pNRQCD: $E, \Lambda_{\text{QCD}}, \frac{\mathbf{p}^2}{m} \ll \nu_{US} \ll |\mathbf{p}| \ll \nu_P, \nu_S \ll \nu_H \sim m$
 - $\bigcirc 1$ Ultrasoft running
 - (2) **Potential running:** needs correlation of scales to keep hierarchy: $\nu_{US} = \frac{\nu_S^2}{\nu_{\mu}}$

- pNRQCD: $E, \Lambda_{\text{QCD}}, \frac{\mathbf{p}^2}{m} \ll \nu_{US} \ll |\mathbf{p}| \ll \nu_P, \nu_S \ll \nu_H \sim m$
 - (1) Ultrasoft running
 - 2 **Potential running:** needs correlation of scales to keep hierarchy: $\nu_{US} = \frac{\nu_S^2}{\nu_{H}}$

$$V_s(\nu_H,\nu_S,\nu_P) = V_s(c(\nu_H,\nu_S,\nu_P),\nu_H,\nu_S,\nu_{US})$$

Energy levels

$$E(n, l, s, s^{-}, j) = E_n^C \left(1 + \frac{\alpha_s}{\pi} P_1 + \left(\frac{\alpha_s}{\pi}\right)^2 P_2^{\text{NNLL}} + \left(\frac{\alpha_s}{\pi}\right)^3 P_3^{\text{N}^3\text{LL}} \right),$$

• Hard work over many years:

see Dani Moreno's talk for a bibliographical historic account

• On the path to N³LL:

① Ultrasoft running:

– 1 and 2-loop self energy with an ultrasoft gluon \checkmark

(2) Soft running:

- Momentum-dependent $\frac{1}{m^2}$ -potentials \checkmark
- delta-like (I = 0) potentials \triangle
- **③** Potential running:
 - Only in delta-like potentials 🗸

\Rightarrow P-wave @N³LL

N³LL: p-wave spin-averaged splitting

$$\Delta_{\mathsf{SI}} = \frac{1}{12} \left(5M_{\chi_{b2}} + 3M_{\chi_{b1}} + M_{\chi_{b0}} \right) + \frac{1}{4} M_{h_b}$$

Only sensitive to the ultrasoft resummation

• RS' scheme at $\nu_f = 1$ GeV, at $\nu_h = 2m_r \ \nu_S = \nu$ and $\nu_{US} = 1$ GeV

 $m_{b,RS'}(\nu_f)$ determined elsewhere: see tomorrow's talk

N³LL: p-wave fine splitting

 \bullet splitting produced by the total angular momentum J=L+S

$$\begin{split} \mathsf{E}(1^{3}P_{j}) &- \mathsf{E}(1^{3}P_{j'}) = \frac{\alpha^{4}C_{F}^{4}m_{r}^{3}}{96m_{1}m_{2}}(j(j+1) - j'(j'+1)) \\ &\times \left\{ -\frac{3}{5}c_{F}^{(1)}c_{F}^{(2)}((j+1)j + (j'+1)j' - 7) \\ &\left(1 + \frac{\alpha}{2\pi} \left(2\left(\frac{209}{36} - \frac{\pi^{2}}{3}\right)\beta_{0} + 2(2\beta_{0} - C_{A})\ln\frac{\nu}{\alpha C_{F}m_{r}} - \frac{17C_{A}}{3}\right) \right) \\ &+ \left(c_{F}^{(1)}\left(\frac{m_{2}}{m_{1}} + 1\right) + c_{F}^{(2)}\left(\frac{m_{1}}{m_{2}} + 1\right) - \frac{m_{1}^{2} + m_{2}^{2}}{2m_{1}m_{2}} \right) \\ &\times \left(1 + \frac{\alpha}{2\pi} \left(C_{A}\left(\log\left(\frac{\alpha C_{F}m_{r}}{\nu}\right) - \frac{19}{3} \right) + \beta_{0}\left(4\log\left(\frac{\nu}{\alpha C_{F}m_{r}}\right) - \frac{2\pi^{2}}{3} + \frac{215}{18} \right) \right) \right) \\ &+ \frac{\alpha}{4\pi} \frac{C_{A}\left(m_{1}^{2} + m_{2}^{2}\right)}{m_{1}m_{2}} \left(\ln\frac{\alpha C_{F}m_{r}}{\nu} - 1 \right) \bigg\} \end{split}$$

N³LO Brambilla et al '04, N³LL CP,Pineda,Segovia

• Resummation encoded in the NRQCD coefficient $c_F^{(i)}(\nu,\nu_h)$

Amoros et al '97, Czarneck '97

N³LL: p-wave fine splitting

Only sensitive to soft running

N³LL: p-wave fine splitting

$$\rho = \frac{E(1^{3}P_{2}) - E(1^{3}P_{1})}{E(1^{3}P_{1}) - E(1^{3}P_{0})}$$

N³LL: p-wave hypefine splitting

Only sensitive to soft running

$$\Delta = M_{h_b} - \frac{1}{9} \left(5M_{\chi_{b2}} + 3M_{\chi_{b1}} + M_{\chi_{b0}} \right) = -\frac{m_r^3 C_F^5 \alpha_s^5}{432 \pi m_1 m_2} (C_A - 8TFn_f) c_F^{(1)} c_F^{(2)}$$
N³LO Brambilla et al '04, N³LL CP,Pineda,Segovia

• Starts at $\mathcal{O}(m_r \alpha^5) \Rightarrow$ we only have one term

N³LL: p-wave hypefine splitting

Only sensitive to soft running

$$\Delta = M_{h_b} - \frac{1}{9} \left(5M_{\chi_{b2}} + 3M_{\chi_{b1}} + M_{\chi_{b0}} \right) = -\frac{m_r^3 C_F^5 \alpha_s^5}{432 \pi m_1 m_2} (C_A - 8 TFn_f) c_F^{(1)} c_F^{(2)}$$
N³LO Brambilla et al '04, N³LL CP,Pineda,Segovia

• Starts at $\mathcal{O}(m_r \alpha^5) \Rightarrow$ we only have one term

N³LL: s-wave mass

• RS(') masses at $\nu_f = 2$ GeV, at $\nu_h = 2m_r \nu_S = \nu$ and $\nu_{US} = 1$ GeV

• Complete NNLL.

 \bullet Partial N^3LL: full NLL ultrasoft potential but missing delta-like Wilson coefficients

 \Rightarrow scale variation reduced by $\sim \frac{1}{2}!$

Summary and further applications

Summary and conclusions

• We compute the N³LL spectrum in pNRQCD for p-waves

- $\bullet\,$ The potentials obtained are valid for $mv\gg\Lambda_{\text{QCD}}$
- \bullet The US contribution is valid for $mv^2 \gg \Lambda_{\text{QCD}}$
- The results include terms of $\mathcal{O}(m_r \alpha_s^6 \ln \alpha_s)$
- \bullet We apply the results to 1P bottomonium and B_c
 - For $b\bar{b}$ our prediction is compatible with experiment although with somewhat large uncertainties
 - Prediction for B_c hyperfine and fine splittings
 - For Δ_{SI} convergence is marginal
- The effect of the ultrasoft scale looks small
- Preliminary (incomplete) results for N³LL s-wave look promising!

For the near future:

- \bullet Phenomenology $\mathsf{N}^3\mathsf{LL}$ for s-wave spectrum
- $t\bar{t}$ -production near threshold at NNLL+N³LO

Thank you!

Convergence of the perturbative series

$$\mathcal{L} = \sum_{i} \frac{1}{m_q^i} C_i \mathcal{O}_i, \qquad C_i(\nu) = \tilde{C}_i + \sum_{n=0}^{\infty} C_{i,n} \alpha_s^{n+1}$$

• Wilson coefficients are **asymptotic** : $C_{i,n} \sim n!$

 \Rightarrow **BUT** comply the OPE: $m_q = m_{os} + \tilde{\Lambda}_{\text{Q}CD}$ is renormalon free

$$m_{os} = m_{\overline{\text{MS}}} \left(1 + B_1 \alpha_s + B_2 \alpha_s^2 + \dots \right), \qquad B_n \sim n!$$

• Redefine the mass such that C_i is **not asymptotic**: threshold mass

Renormalon subtracted schemes:

$$m_{\mathrm{RS}(\prime)} = m_{OS} - N_m \pi \nu_f \sum_{N=0(1)}^{\infty} \left(\frac{\beta_0}{2}\right)^N \left(\frac{\alpha(n_l,\nu_f)}{\pi}\right)^{N+1} \sum_{n=0}^{\infty} \tilde{\chi}_n \frac{\Gamma(b+N+1-n)}{\Gamma(b+1-n)}$$

Pineda

• Introduction of a new scale $\nu_f \sim m_r \alpha_s$