

Quarkonium spectroscopy studies at CMS

QWG 2019 – The 13th International Workshop on Heavy Quarkonium 13–17 May 2019 Torino, Italy

11 11 11 11 11

Adriano Di Florio on behalf of the CMS collaboration

LILLILL

Adriano Di Florio

ann n n n n n n n

QWG2019 Cavallerizza Reale, Torino - 15 May 2019

The CMS Experiment at LHC

The Compact Muon Solenoid (CMS) is a general purpose detector designed for the precision measurement of leptons, photons, and jets, among other physics objects, in proton-proton as well as heavy ion collisions at the CERN LHC facility.

Muon Reconstruction and Triggering

The Compact Muon Solenoid (CMS) is a general purpose detector designed for the precision measurement of leptons, photons, and jets, among other physics objects, in proton-proton as well as heavy ion collisions at the CERN LHC facility.

Tracking system

- Sood p_T resolution (down to $\Delta p_T / p_T \approx 1\%$ in barrel)
- Tracking efficiency >99% for central muons
- Good vertex reconstruction & impact parameter resolution O(µm)

Muon system

- Muon candidates reconstructed by matching muon segments and a silicon track in a large rapidity coverage ($|\eta| < 2.4$)
- Sood dimuon mass resolution ($|\eta|$ dependent):
 - $\Delta M/M \approx 0.6 \div 1.5\% \longrightarrow J/\psi :\approx (20 \div 70) MeV$
- **Excellent muon-ID:** $\varepsilon(\mu \mid \pi, K, p) \le (0.1 \div 0.2)\%$

Run II Data

The CMS experiment has recorded 150 fb⁻¹ at 13 TeV of data of which \sim 143 fb⁻¹ have been certified for physics CMS Integrated Luminosity, pp, $\sqrt{s} = 13$ TeV

> Observation of $B_c(2S)$ and $B_c^*(2S)$ states

b Observation of $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ states

Observation of $B_c(2S)$ and $B_c^*(2S)$ states

Phys.Rev.Lett. 122, 132001 (2019) arXiv:1902.00571

The B_c family

The B_c family consists of charged mesons composed of a beauty antiquark and a charm quark (or vice versa). The ground state B_c was discovered in 1998 by the CDF Collaboration in the $B_c \rightarrow J/\psi l \nu$ decay channel [PRL 81 (1998) 2432]

The B_c family

The B_c family consists of charged mesons composed of a beauty antiquark and a charm quark (or vice versa). The ground state B_c was discovered in 1998 by the CDF Collaboration in the $B_c \rightarrow J/\psi l \nu$ decay channel [PRL 81 (1998) 2432]

Since the bc mesons cannot annihilate into gluons, the excited states decay to the ground state via the cascade emission of γ or π pairs total widths that are less than a few hundred KeV

Their production yields are extremely low since the **bc** production cross sections is proportional to the α_s^4 : two pairs of heavy quarks produced

Nevertheless theoretical preditions on B_c excited states proliferates:

Meson	Predicted Mass (MeV)	PRD 49 (1994) 5845 PRD 51 (1995) 3613
B _c	6247 ÷ 6286	PRD 52 (1995) 5229 PRD 53 (1996) 312
B_c^*	$6308 \div 6341$	PLB 382 (1996) 131 PRD 160 (1999) 074006 DDD 47 (2003) 016027
$B_c(2S)$	6835 ÷ 6882	PRD 70 (2004) 054017 PRI 104 (2010) 022001
$B_c^*(2S)$	6881 ÷ 6914	PRD 86 (2012) 094510 PRL 121 (2018) 202002

The B_c family

The B_c family consists of charged mesons composed of a beauty antiquark and a charm quark (or vice versa). The ground state B_c was discovered in 1998 by the CDF Collaboration in the $B_c \rightarrow J/\psi l \nu$ decay channel [PRL 81 (1998) 2432]

Since the bc mesons cannot annihilate into gluons, the excited states decay to the ground state via the cascade emission of γ or π pairs total widths that are less than a few hundred KeV

Their production yields are extremely low since the **bc** production cross sections is proportional to the α_s^4 : two pairs of heavy quarks produced

Nevertheless theoretical preditions on B_c excited states proliferates:

Meson	Predicted Mass (MeV)	PRD 49 (1994) 5845 PRD 51 (1995) 3613
B _c	6247 ÷ 6286	PRD 52 (1995) 5229 PRD 53 (1996) 312
B_c^*	6308 ÷ 6341	PLB 382 (1996) 131 PRD 160 (1999) 074006
$B_c(2S)$	6835 ÷ 6882	PRD 67 (2003) 014027 PRD 70 (2004) 054017 DDI 106 (2010) 022001
$B_{c}^{*}(2S)$	6881 ÷ 6914	PRD 86 (2012) 094510 PRL 121 (2018) 202002

Observation of an excitate B_c^+ meson state by ATLAS

ATLAS

PRL 113 (2014) 212004

Using both 7 TeV and 8 TeV Run I collected data ATLAS collaboration reported the observation of a a new state whose mass is consistent with predictions for the B_c (2S)

$B_c \to J/\psi \pi$

Data	Signal events	Peak mean [MeV]	Peak width [MeV]
7 TeV	100 ± 23	6282 ± 8	49 ± 12
8 TeV	227 ± 25	6277 ± 6	50 ± 8

$$B_c(2S) \rightarrow B_c \pi \pi$$

$$N_{B_{c(2S)}} = 22 \pm 6 \qquad 7 \text{ TeV}$$

$$N_{B_{c(2S)}} = 35 \pm 13 \qquad \text{8 TeV}$$

For the combined 7 and 8 TeV data set the total significance of the observation is found to be 5.2σ (5.4 σ local at fixed mass).

Adriano Di Florio

Search for excited B_c^+ states by LHCb

Using 2.9 fb⁻¹ of 8 TeV data LHCb collaborations searched for the B_c (2S) in the same decay channel used by ATLAS

With much more B_c candidates (3325 \pm 73) they found no evidence of B_c (2S) signals and quoted a limit

$$\mathcal{R} = \frac{\sigma_{B_c^{(*)}(2S)^+}}{\sigma_{B_c^+}} \cdot \mathcal{B}(B_c^{(*)}(2S)^+ \to B_c^{(*)+}\pi^+\pi^-)$$

	$\sqrt{s} = 7 \mathrm{TeV}$	$\sqrt{s} = 8 \mathrm{TeV}$
ATLAS	$(0.22 \pm 0.08 ({\rm stat}))/\varepsilon_7$	$(0.15\pm0.06({\rm stat}))/\varepsilon_8$
LHCb	—	< [0.04, 0.09]

> Search sensitivity enhanced by the use of MLP neural network (4 categories)

$B_c^+(2S)$ and $B_c^{*+}(2S)$ reconstruction

The $B_c^+(2S)$ decays directly to the B_c^+ ground state :

 $B_c^+(2S) \to B_c^+\pi^+\pi^-$

The $B_c^{*+}(2S)$ decays to B_c^{*+} state through $\pi\pi$ emission followed by a radiative decay of B_c^{*+} to the B_c^+ ground state with the emission of a soft γ (E~55 MeV in rest frame):

 $B_c^{*+}(2S) \rightarrow B_c^{*+}(\rightarrow B_c^+ \gamma) \pi^+ \pi^-$

Having the emitted photon a very low energy, its detection is very challenging, and tipically it is lost. Thus:

 $B_c^+(2S) \rightarrow B_c^+\pi^+\pi^- + E_{miss}$

The $B_c^{*+}(2S)$ peak should then appear into $B_c^+\pi^+\pi^-$ mass spectrum at the mass $M(B_c^+(2S)) - \Delta M$ where

 $\Delta M = \Delta M_1 - \Delta M_2 = [M(B_c^*(1S)) - M(B_c(1S))] - [M(B_c^*(2S)) - M(B_c(2S))]$

which is predicted positive ($\Delta M \sim 20 \text{ MeV}$) so that the $B_c^{*+}(2S)$ peak will be at lower masses than the $B_c^+(2S)$ peak.

Event Selection

Trigger preselection: two μ from J/ψ plus a track, with common vertex displaced from interaction point ($L_{xy}/\sigma_{L_{xy}} > 3.0$)

 $B_c^+(2S) \to B_c^+\pi^+\pi^-$

 $B_c^{*+}(2S) \rightarrow B_c^{*+}\pi^+\pi^-$

- B_c^+ meson momentum required to point to PV in xy plane
- > $6.2 GeV < M(B_c) < 6.35 GeV$
- The PV is re-fitted excluding the three B_c decay tracls ($\mu\mu\pi_1$)

- **Tracks and muons satisfy high-quality requirements**
- > Among multiple $B_c^+\pi^+\pi^-$ candidates the highest p_T one is kept
- \rightarrow π_2 and π_3 are tracks from the refitted PV

$B_c(2S)$ and $B_c^*(2S)$ observation

- The $M(B_c \pi \pi) M(B_c) + m_{PDG}(B_c)$ distribution is fitted with Gaussian functions for the peaks and a 3rd order Chebyshev polynomial for the background.
- Mass resolution agrees with MC expectations (~6MeV) and is much lower than ΔM thus allowing a two-peak structure to be observed.

Measured two peaks' mass difference:

 $\Delta M = 29.1 \pm 1.5 \text{ (stat)} \text{MeV}$

Given the predicted mass splitting ($\Delta M_1 - \Delta M_2 > 0$), $B_c^+(2S)$ is assumed to be the right-most peak

$$M(B_c(2S)) = 6871.0 \pm 1.2 \text{ (stat)} \text{MeV}$$

From MC studies: the low-energy γ emitted in the $B_c^{*+}(2S)$ decay has a very small reconstruction efficiency, of order 1%. The photon is not detected and the mass of the $B_c^*(2S)$ cannot be measured.

- Local significance exceeding 6.5σ for observing two peaks rather than one. For both single peaks significance is above 5σ
- When fitting each signal with a Breit-Wigner convolved with the gaussian resolution function the natural width (predicted 50 ÷ 90 KeV) is consistent with zero: natural widths are much smaller than resolution.

$$N_{B_c^{*+}(2S)} = 67 \pm 10 \qquad \qquad N_{B_c^{+}(2S)} = 51 \pm 10 \qquad \qquad \chi_{fit}^2 = 42 \ (d. \ o. \ f. = 39)$$

Systematic Uncertainties

Partially reconstructed decays

The low-mass edge of signal mass window was varied from 6.2 to 6.1, to increase this contamination; the variations in the results are negligible : no systematic uncertainty is considered

Alignment of the detector

The possible misalignment of detector biases the measured masses, however for studies with major detector changes (2016 vs 2017), was found to be negligible

$J/\psi K$ background contamination:

Difference seen when normalisation increased by a factor 2: the difference is negligible

$B_{c}(2S)$ fit modeling

Alternative functions for the signal and the backgrounds

- Signal : changed from two Gaussians to two Breit-Wigner functions
- Background: changed from a polynomials to a threshold function Observed differences in M and ΔM are quoted as systematic uncertainties: 0.8 and 0.7 MeV respectively

 $\Delta M = \Delta M_1 - \Delta M_2 = 29.1 \pm 1.5 \text{ (stat)} \pm 0.7 \text{ (sys) } MeV$ $M(B_c(2S)) = 6871.0 \pm 1.2 \text{ (stat)} \pm 0.8 \text{ (sys)} \pm 0.8 \text{ (B}_c) MeV$ $m_{PDG}(B_c)$ world average uncertainty

Observation of $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ states

Phys. Rev. Lett. 121, 092002 (2018) arXiv:1805.11192

The bottomonium family

The bottomonium family $(b\overline{b})$ plays a special role in understanding how the strong force binds quarks because, due to the high quark mass, allows two important theoretical simplifications

- 1. the hard-scattering production of a proto-quarkonium quarkantiquark pair can be described in perturbation theory
- 2. the binding of the quark-antiquark pair can be described in terms of lattice-calculable nonrelativistic potentials

The measurements of the masses of the $\chi_{bJ}(3P)$ triplet states (J = 0, 1, 2) is especially interesting to probe details of the $b\overline{b}$ interaction in proximity of J_{P} open-beauty threshold

The $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ states

The $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ reconstruction – $\Upsilon(3S)$ selection

Based on pp data, collected from 2015 to 2017 at $\sqrt{s} = 13 \text{ TeV}$ and corresponding to $\mathcal{L}_{int} = 80 \text{ fb}^{-1}$, CMS reported the first observation of resolved $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ states and the measurement of their masses through the decay channel :

 $\chi_{h}(3P) \rightarrow \Upsilon(3S)\gamma$

Y(3S) $\rightarrow \mu\mu$ decay triggering the event with a $\mu\mu$ pair with two opposite sign μ coming from a common vertex

Y candidate:
$$p_T > 14 \ GeV |y| < 1.2$$

High purity Y(3S) sample achieved with tight mass cuts:

 $M(\Upsilon(3S)) - n_s \sigma_m(y) < M(\mu\mu) < M(\Upsilon(3S)) + 2.5\sigma_m(y)$ low $\Upsilon(2S)$ contamination S/B > 0.5

The $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ reconstruction – γ selection

Based on pp data, collected from 2015 to 2017 at $\sqrt{s} = 13 \text{ TeV}$ and corresponding to $\mathcal{L}_{int} = 80 \text{ fb}^{-1}$, CMS reported the first observation of resolved $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ states and the measurement of their masses through the decay channel :

 $\chi_b(3P) \to \boldsymbol{Y}(3\boldsymbol{S})\gamma$

- $\gamma
 ightarrow ee$ converted photon with $|\eta| < 1.2$ and $p_T > 500~MeV$
- For an higher resolution, at the cost of a reduced yield (w.r.t. calorimetric energy measurements), only e⁺ e⁻ from a conversion in the beam pipe or in the tracker are considered see arXiv:1210.0875 & arXiv:1409.5761

For a more accurate measure the photon energy scale is calibrated through a $\chi_{c1} \rightarrow J/\psi(\rightarrow \mu\mu)\gamma$ sample:

$$P.E.S. = \frac{m_{\mu\mu\gamma}^2 - m_{\mu\mu}^2}{M(\chi_{c1})^2 - M(J/\psi)^2}$$

Large data sample in the same running periods

and is used for the event-by-event correction of the photon energy in the computation of the $\Upsilon(3S)\gamma$ invariant mass

The $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ mass spectrum

The $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ mass spectrum

Unbinned ML fit

- > Signal modelled using a double gaussian
- Combinatorial background: exponential function
- > Total (two peaks) yield is 372 ± 36

The two masses:

 $M(\chi_{b1}(3P)) = 10513.42 \pm 0.41(\text{stat}) \pm 0.18(\text{sys})\text{MeV}$ $M(\chi_{b2}(3P)) = 10524.02 \pm 0.57(\text{stat}) \pm 0.18(\text{sys})\text{MeV}$

The mass difference between the J = 1,2 states is measured to be:

 $\Delta M = M(\chi_{b2}(3P)) - M(\chi_{b1}(3P)) =$

 $= 10.60 \pm 0.64(stat) \pm 0.17(sys)MeV$

Main systematic uncertainties:

- PES fit function (0.16 MeV)
- Fit functions (0.05 MeV)
- $\Upsilon(3S)$ mass uncertainty cancels out

There is a large number of theory predictions for the ΔM mass spliting between the J = 1 and $J = 2 \chi_{bI}(3P)$ states

> Out of 20 predictions:

- 19 range from 8 to 18 MeV
- 1 prediction is -2 MeV

CMS measurement

 $\Delta M = 10.60 \pm 0.64 (\text{stat}) \pm 0.17 (\text{sys}) \text{MeV}$

has sufficient precision to provide an important constraint to the theory models calculating quarkonium spectroscopy levels

```
1) most of the predictions may be ruled out
```

2) breaking of the conventional pattern of splittings strongly disfavoured

Observation of $B_c(2S)$ and $B_c^*(2S)$ states

- Signals consistent with the $B_c(2S)$ and $B_c^*(2S)$ states have been separately observed for the first time by investigating the $B_c\pi\pi$ invariant mass spectrum measured by CMS experiment. ΔM and $M(B_c(2S))$ have been measured while the mass of the $B_c^*(2S)$ state remains unknown because the B_c^* decays to $B_c\gamma$ and the γ is not reconstructed
- This analysis is first LHC result based on the full usable Run 2 data of proton-proton collisions at $\sqrt{s} = 13 \text{TeV}$, corresponding to a total integrated luminosity of 143 fb⁻¹
- **b** Both peaks have local significance exceeding 5σ , the significance of two peaks with respect to observing only one peak is 6.5σ

Observation of $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ states

- Signals consistent with the $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ states have been separately observed for the first time by investigating the $\Upsilon(3S)\gamma$ invariant with the photon converting ($\rightarrow ee$) in the beam pipe or in the tracker to enhance the mass resolution
- AM, $M(\chi_{b1}(3P))$ and $M(\chi_{b2}(3P))$ have been measured with sufficient precision to highly support the standard mass hierarchy
- **Two peaks local significance exceeds** 5σ

Both these measurements contribute significantly provide a rich source of information on the non-perturbative QCD processes that bind heavy quarks

Thank You

"I am putting myself to the fullest possible use, which is all I think that any conscious entity can ever hope to do"

Back Up

B_c example event display

Adriano Di Florio

B1