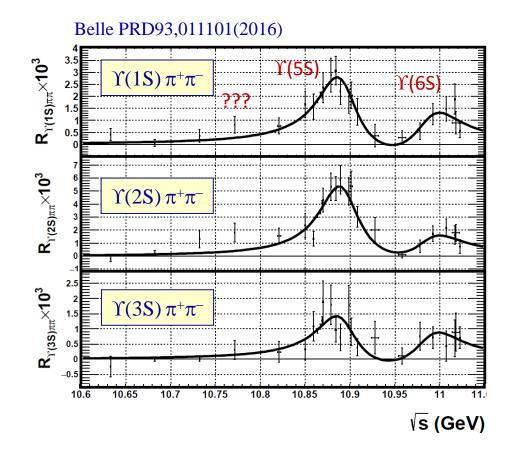
13th International Workshop on Heavy Quarkonium (QWG2019), 13–17 May 2019, Torino

Update on $e^+e^- \rightarrow \Upsilon(nS) \pi^+\pi^$ scan at Belle


arxiv:1905.05521

Roman Mizuk

Lebedev Physical Institute, Moscow

Previous measurement

Clear signals of $\Upsilon(5S)$, $\Upsilon(6S)$. Excess near 10.77 GeV? Which vector states are expected in this energy range? $\Upsilon(3D)$ mixed with $\Upsilon(4S,5S)$ mixing could be enhanced due to hadron loops Exotic states: hadrobottomonia, compact tetraquarks \Rightarrow Motivation for update.

Changes in the new measurement

The same data samples, improvements in the analysis:

PREVIOUS

Use more decay channels $\Upsilon(nS) \rightarrow \mu^+ \mu^-$

Improve statistical treatment of data

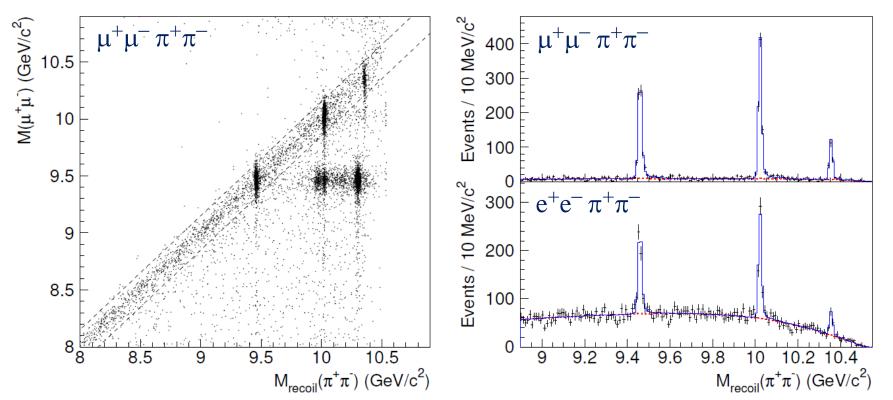
Count events in the signal and sideband regions with 1/Efficiency weights NEW

 $\Upsilon(nS) \rightarrow \mu^+ \mu^-$ and $e^+ e^-$

Find signal yield from a fit, then apply efficiency correction Need 3-body matrix element to generate MC PRD91,072003(2015)

accuracy is improved by a factor ~1.3

Use ISR in high statistics Υ (5S) on-resonance data to study cross section energy dependence


Data samples

Scan data: 22 points ×1 fb⁻¹ Υ (5S) on-resonance data: 121 fb⁻¹ at 5 points, E_{max} – E_{min} = 3MeV Continuum data, 10.52GeV: 61 fb⁻¹

Selection requirements

 $\mu^{+}\mu^{-} \pi^{+}\pi^{-} / e^{+}e^{-} \pi^{+}\pi^{-} \text{ require PID, energy balance;}$ extra in e⁺e⁻ channel: M_{recoil}(e⁺e⁻) > 350 MeV, cos\theta_e_- < 0.82

Background: QED production of 4 tracks

Signal shape in $M_{recoil}(\pi^+\pi^-)$

 \otimes

Calculation scheme

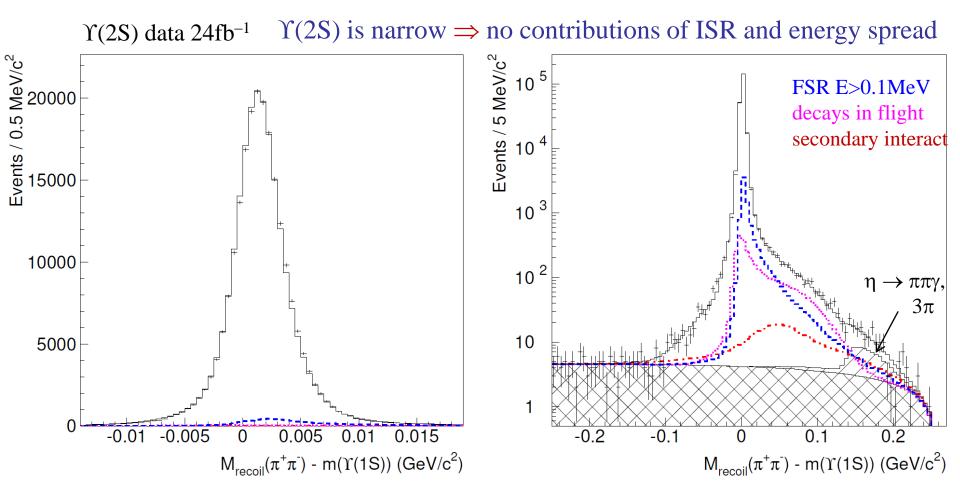
Momentum resolution

includes effects of

- FSR
- decays-in-flight
- secondary interactions

ISR

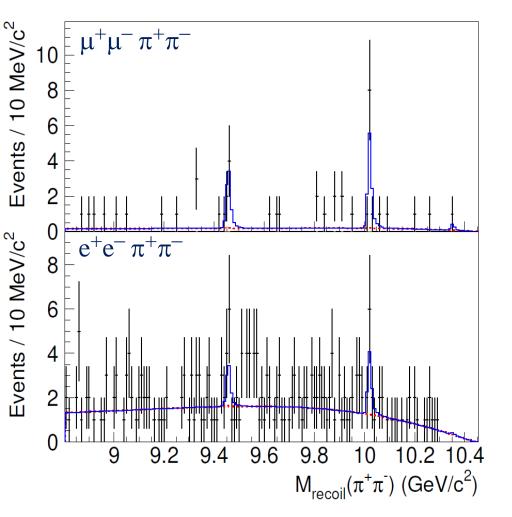
Kuraev-Fadin radiator function $\times \sigma(E_{cm})$ $\times \epsilon (E\gamma_{ISR})$


 $\bigotimes \quad \text{Ecm spread} \\ \begin{array}{c} \text{Gaussian} \times \sigma(\text{E}_{cm}) \\ 5.4 \text{ MeV} \end{array}$

× ε of energy balance requirement soft cut-off at ~200 MeV

 $\sigma(E_{cm})$ is being measured \Rightarrow iterations

compute signal shapes measure cross sections fit energy dependence of cross sections


Verification of signal shape

Shapes from MC; floated parameters are yield, overall shift and momentum resolution fudge factor $f = 1.160 \pm 0.003$

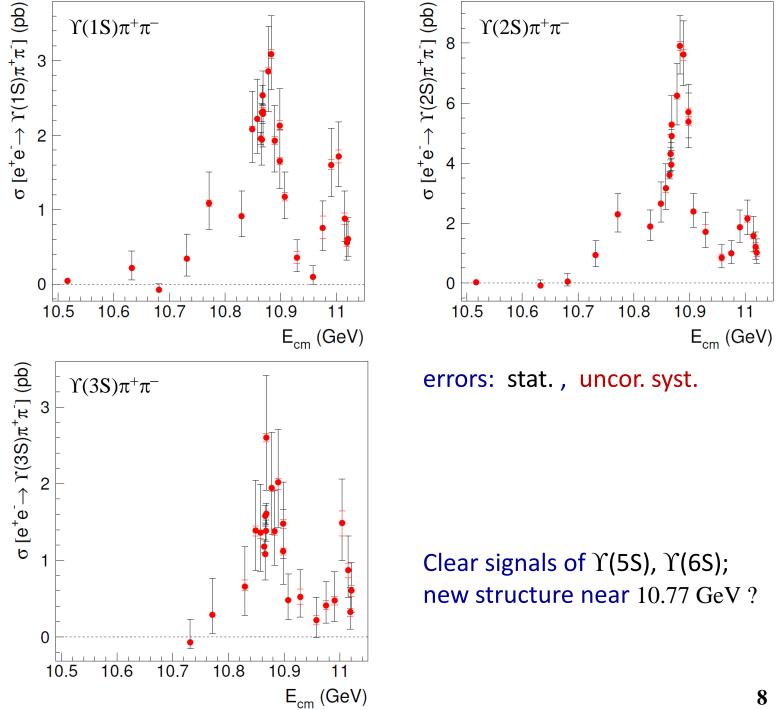
Use $\Upsilon(3S)$ data $3fb^{-1}$ to study energy dependence of $f \Rightarrow$ constant

Fit to $M_{recoil}(\pi^+\pi^-)$

Signal:

fix ratio of ee/µµ yields, float µµ yields and overall shift $\Rightarrow E_{cm}$ calibration

Non-peaking background: $B(x) = A (x - x_0)^p P_3(x)$

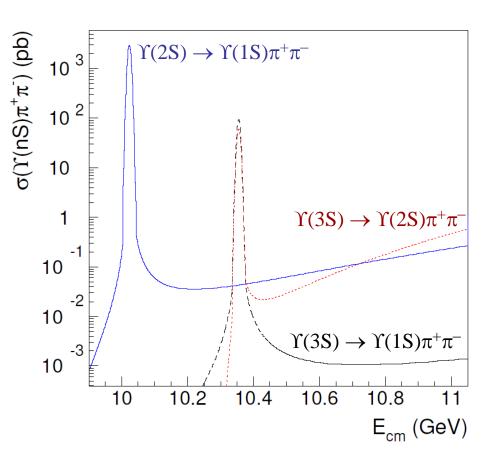

Peaking background:

e.g.
$$e^+e^- \rightarrow \gamma^*\gamma^* \rightarrow \Upsilon(nS) \pi^+\pi^-$$

 $\downarrow \mu^+\mu^-$

from MC, small contribution

Shamov et al., to be published in proceedings of PhiPsi 2019



Continuum below Υ (4S)

Hints for non-zero values:

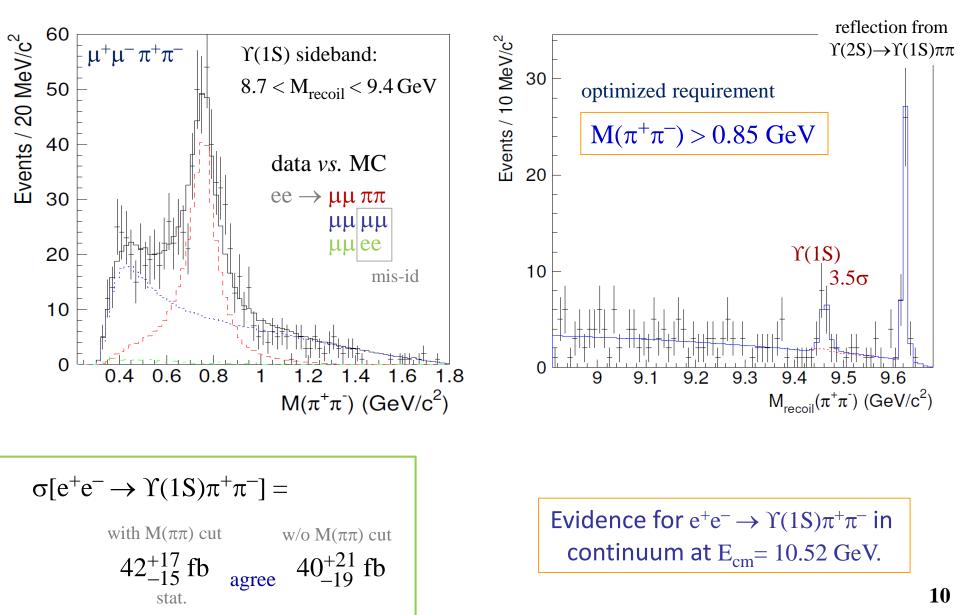
$$\sigma[e^+e^- \to \Upsilon(1S)\pi^+\pi^-] = 40^{+21}_{-19} \text{ fb}$$

$$\sigma[e^+e^- \to \Upsilon(2S)\pi^+\pi^-] = 25^{+29}_{-25} \text{ fb}$$

What could be the origin?

Expectations:

 $\begin{array}{l} e^+e^- \rightarrow \Upsilon(2S) \rightarrow \Upsilon(1S)\pi^+\pi^- = 71 fb \\ e^+e^- \rightarrow \Upsilon(3S) \rightarrow \Upsilon(1S)\pi^+\pi^- = \ 2 \ fb \\ e^+e^- \rightarrow \Upsilon(3S) \rightarrow \Upsilon(2S)\pi^+\pi^- = 35 fb \end{array}$


 \Leftarrow BW with *M*, Γ, Γ_{ee}, *B*_f from PDG. Γ_f(s) : integrate ME over Dalitz plot.

ME rapidly increase with $M(\pi^+\pi^-) \Rightarrow$ BW tails increase with energy

 \Rightarrow Large contributions at high energy

Continuum below Υ (4S)

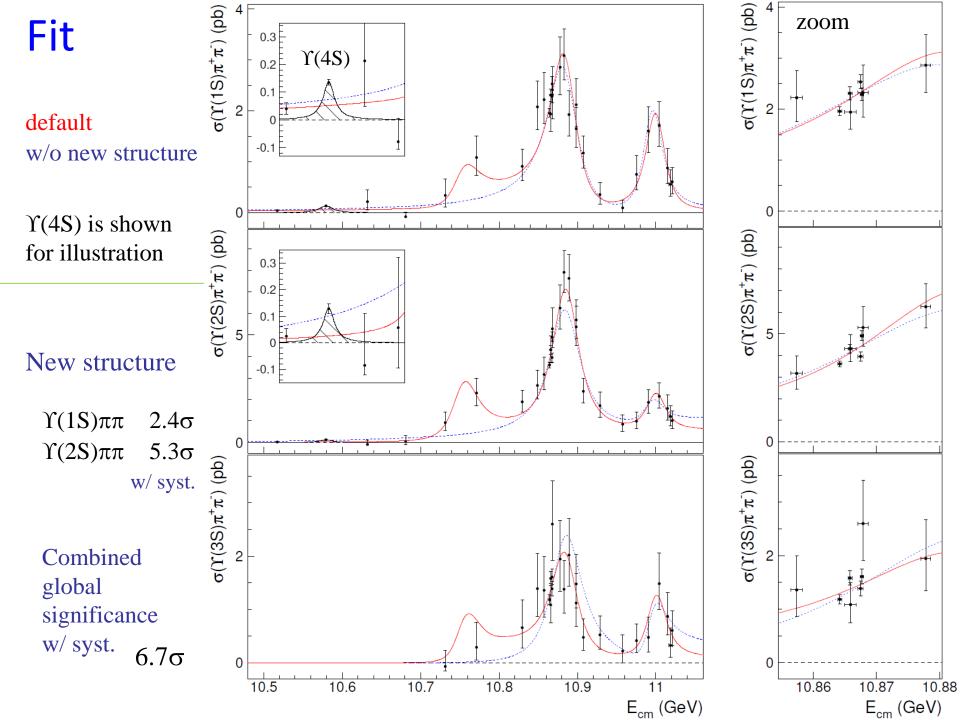
 $M(\pi^+\pi^-)$ distribution: distinguish signal from background

Fit to energy dependence of cross sections

Fit function

 $|BW_{\Upsilon(5S)}^{(n)} + e^{i\alpha_n} BW_{\Upsilon(6S)}^{(n)} + e^{i\beta_n} BW_{new}^{(n)} + e^{i\gamma_n} BW_{\Upsilon((n+1)S)}^{(n)}|^2 \otimes Gaussian$

The new structure might have resonant or non-resonant origin. The two effects are difficult to distinguish \leftarrow similar line shape, phase motion.

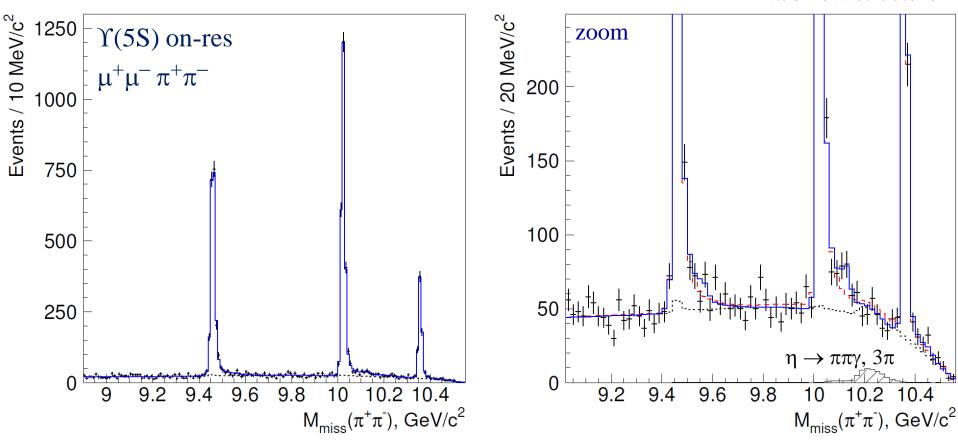

Bugg EPL96,11002(2011)

. . .

 \Rightarrow Breit-Wigner – reasonable approximation in both cases. we do not claim that the new structure is a resonance

$$BW(s, M, \Gamma, \Gamma_{ee}^{0} \times \mathcal{B}_{f}) = \frac{\sqrt{12\pi \Gamma \Gamma_{ee}^{0} \times \mathcal{B}_{f}}}{s - M^{2} + iM\Gamma} \sqrt{\frac{\Gamma_{f}(s)}{\Gamma_{f}(M^{2})}}$$

 $\begin{array}{ll} \mbox{Floated parameters:} & M, \Gamma & \mbox{for } \Upsilon(5S), \Upsilon(6S), \mbox{new structure} \\ \Gamma_{ee}^0 \times \mathcal{B}_f, \mbox{complex phases} & \mbox{for all contributions, for all channels} \end{array}$



Fit

ISR tails of the $\Upsilon(nS)\pi\pi$ signals are sensitive to the cross section shapes. \Rightarrow Include the $M_{recoil}(\pi^{+}\pi^{-})$ distribution into the fit.

simultaneous fit to the cross sections and $M_{recoil}(\pi^+\pi^-)$

default w/o new structure

Excellent description of ISR tails.

Fit results

	$\Upsilon(10860)$	$\Upsilon(11020)$	new structure
$\frac{M (MeV/c^2)}{\Gamma (MeV)}$	-0.5	$11000.0_{-4.5}^{+4.0}_{-1.3}^{+1.0}$ $23.8_{-6.8}^{+8.0}_{-1.8}^{+0.7}$	$10752.7 \pm 5.9 ^{+0.7}_{-1.1}$ $35.5^{+17.6}_{-11.3} ^{+3.9}_{-3.3}$
Previous measurement	1.1	$10987.5^{+6.4}_{-2.5}{}^{+9.0}_{-2.1}$ $61^{+9}_{-19}{}^{+2}_{-20}$	PRD93,011101(2016) many differences, e.g. model: new structure, tails $\sigma^{vis} \Leftrightarrow \sigma^{B}$
С	$ \begin{array}{r} 10884.7^{+3.6}_{-3.4} - 1.0 \\ 40.6^{+12.7}_{-8.0} - 19.1 \end{array} $	$\begin{array}{c} 10999.0^{+7.3}_{-7.8} + 16.9 \\ 0.7.8 - 1.0 \\ 27^{+27+5}_{-11-12} \end{array} \text{ PR}$	L117,142001(2016)

good agreement

Branching fractions

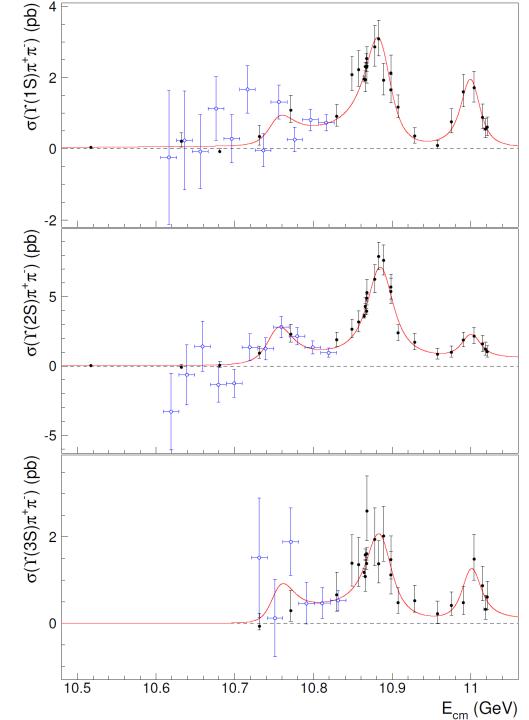
Multiple solutions: sum of N BW amplitudes -2^{N-1} solutions (4 or 8 in our case)

 $\Gamma_{\rm ee} \times \mathcal{B} \ ({\rm in \ eV})$

		$ \Gamma(10860) $	$\Upsilon(11020)$	new
Ranges: min – max	$\Upsilon(1S)\pi^+\pi^-$	0.75 - 1.43	0.38 - 0.54	0.12 - 0.47
	$\Upsilon(2S)\pi^+\pi^-$	1.35 - 3.80	0.13 - 1.16	0.53 - 1.22
	$\Upsilon(3S)\pi^+\pi^-$	0.43 - 1.03	0.17 - 0.49	0.21 - 0.26

 $\Upsilon(4S)$ Belle PRD96,052005(2017)Implications? $\mathcal{B}(\Upsilon(4S) \to \Upsilon(1S)\pi^+\pi^-) = (8.2 \pm 0.5 \pm 0.4) \times 10^{-5}$ $\mathcal{B}(\Upsilon(4S) \to \Upsilon(2S)\pi^+\pi^-) = (7.9 \pm 1.0 \pm 0.4) \times 10^{-5}$

Include Υ (4S) in the fit, scan FCN in $B \Rightarrow$


 $(1.2 - 16) \times 10^{-5}$ 67% C.L. $(1.3 - 9.6) \times 10^{-5}$

Visualization

Blue points: cross sections estimated using ISR tails

Not to be used in the fit:

- 1. Stat. errors only.
- ISR luminosity changes rapidly
 w/ energy ⇒ difficult to estimate
 effects of spread & resolution.

Conclusions

Observation of new structure

 $M = 10752.7 \pm 5.9^{+0.7}_{-0.4} \text{ MeV}$ $\Gamma = 35.5^{+17.6}_{-11.3} \pm 3.4 \text{ MeV}$

Global significance including systematics: 6.7σ .

arxiv:1905.05521

Evidence for $e^+e^- \rightarrow \Upsilon(1S) \pi^+\pi^-$ at $E_{cm} = 10.52 \text{ GeV}$

- implications for BF[Υ (4S) $\rightarrow \Upsilon$ (1,2S) $\pi^+\pi^-$]

All results are preliminary

Interpretation?

Resonance? Υ (3D), exotics,.. Non-resonant effect? Complicated rescattering,.. Need information on other channels to clarify the origin.

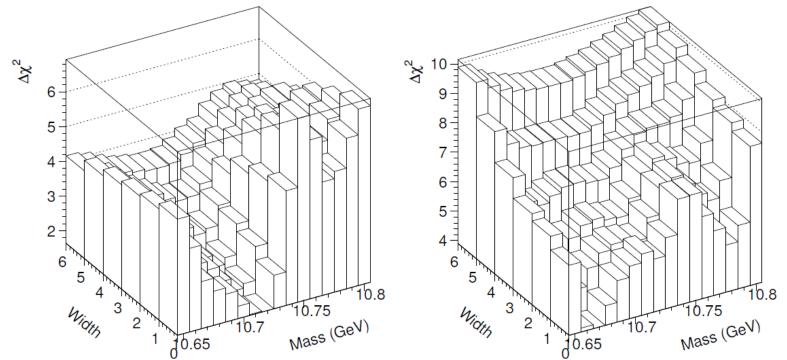
Back-up

Tails

Matrix elements of $\Upsilon(2S,3S) \rightarrow \Upsilon(1S,2S)\pi^+\pi^-$ have terms proportional to $M^2(\pi^+\pi^-)$ \Rightarrow Contributions rise quickly as PHSP grows with c.m. energy

Global significance

Exclude new structure in all channels: Δ (-2lnL) = 66.


52. – cross sections 14. – recoil mass

local significance 7.0 σ

global?

Astropart. Phys. 35, 230 (2011)

Gross-Vitells: toy MC, scan Δ (-2lnL) in M, Γ (=30,40,50,70,100,150 MeV)

Euler characteristic

 $p = \chi_6^2(u) + e^{-u/2} u^2 \left(A \sqrt{u} + B \left(u - 5\right)\right)$

"Look elsewhere effect": p-value \times 4.5, global significance 6.8 σ

w/ syst. 6.7σ

20