

STAR quarkonium measurements in heavy ion collisions

Jaroslav Bielčík for the STAR collaboration

Czech Technical University in Prague

QWG 2019 – The 13-th International Workshop on Heavy Quarkonium 13-17 May 2019 Torino, Italy

Quarkonium in nuclear matter

- In heavy ion collisions at RHIC hot and dense quark gluon plasma is created
- Heavy-flavor quarks are good probes for studying QGP
 - \rightarrow $m_{c,b} >> T_c$, Λ_{QCD} , $m_{u,d,s}$: produced dominantly by high-Q² scatterings in the early stage
- Due to color screening of quark-antiquark potential in QGP quarkonium dissociation is expected

Quarkonium in nuclear matter

 Sequential melting: suppression of different states is determined by medium temperature and their binding energies - QGP thermometer

- Hot nuclear matter effects
 - Dissociation
 - Regeneration from deconfined quarks
 - Medium-induced energy loss
 - Formation time effect
- Cold nuclear matter effects (CNM)
 - Nuclear absorption, gluon shadowing, initial state energy loss, Cronin effect and gluon saturation.
- Feed-down from excited states and B-hadrons

https://indico.cern.ch/event/443462/images/6069-hf_cartoon1.png

STAR experiment

J/ψ and ψ(2s) production in 200 GeV p+Au collisions

- Models with only nPDF effects can reach upper uncertainty limit of the data at low and high p_T, but underpredicts the suppression at p_T of 3-6 GeV/c
 - Additional nuclear absorption is favored by data
- First $\psi(2S)$ to J/ ψ double ratio measurement from STAR between p+Au and p+p at midrapidity at RHIC: 1.37 ±0.42(stat.) ±0.19(syst.)

J/ψ production in 200 GeV Au+Au collisions

- R_{AA} increases from ~0.5 to 1.0 at high-p_T in 20-40% and 40-60% centrality, most likely due to CNM, formation time effects and B-hadron feed-down
- No obvious p_T dependence for 0-20% and 0-60% centrality
 - Suppression at low \textbf{p}_{T} is interplay of dissociation, Cold Nuclear Matter effects and regeneration
 - Suppression at high p_T is mainly due to dissociation, other effects are small

J/ψ production in 200 GeV Au+Au collisions STAR

- Suppression in central collisions at low p_T:
 - dissociation, Cold Nuclear Matter effects, regeneration
- Suppression in central collisions at high p_T: due to dissociation
- LHC vs RHIC:
 - More regeneration at the LHC leads to less suppression at low p_T
 - Higher temperature at the LHC, higher dissociation leads to more suppression at high p_T

J/ψ production in 200 GeV Au+Au collisions STAR

Tsinghua at RHIC: PLB 678 (2009) 72, Tsinghua at LHC: PRC 89 (2014) 054911 TAMU at RHIC: PRC 82 (2010) 064905, TAMU at LHC: NPA 859 (2011) 114

- Models (dissociation + regeneration effects) can describe centrality dependence at RHIC, but overestimate suppression at the LHC at low p_⊤
- At high p_T both models can qualitatively describe data at RHIC and the LHC

J/ψ production at very low p_T

- Large enhancement at low p_T in peripheral collisions
 - Cannot be explained by hadronic production (color screening, CNM, regeneration)

model W.Zha PRC 97, 044910 (2018)

- Coherent photoproduction of J/ψ can qualitatively explain the observation
 - In semicentral collisions data favor model configuration Nucleus+Spectator and Spectator+Nucleus as photon and Pomeron emitters

STAR

Bottomonia Y(1S), Y(2S), Y(3S)

- Recombination effects
 - J/ψ : Evidence for large effects at the LHC.
 - Y: Expecting negligible contribution.

```
\sigma_{cc} @ RHIC: 797 ± 210 <sup>+208</sup> <sub>-295</sub> µb. (PRD 86, 072013(2012))
```

 σ_{bb} @ RHIC: ~ 1.34 – 1.84 μb (PRD 83 (2011) 052006)

- Co-mover absorption effects
 - Y (1S): tightly bound, larger kinematic threshold.
 - Expect σ ~ 0.2 mb, 5-10 times smaller than for J/ ψ
 - Lin & Ko, PLB 503 (2001) 104

Y(1S,2S,3S) in 200 GeV p+Au collisions

- Indication of Y(1S,2S,3S) suppression in p+Au collisions
- $R_{pAu}|_{|y|<0.5} = 0.82 \pm 0.10(stat.)^{+0.08}_{-0.07} (syst.) \pm 0.10(glob.)$
- Suppression due to CNM effects beyond expectation from nPDFs only

Y(1S,2S,3S) in 200 GeV Au+Au collisions

- Dielectron and dimuon results consistent with each other
- Stronger suppression of $\Upsilon(2S + 3S)$ than $\Upsilon(1S)$ in central coll.
 - Consistent with sequential melting expectations

STAR

Y at RHIC and LHC

Phys. Lett. B 770(2017) 357

- Similar suppression for Y(1S), despite higher medium temperature at the LHC
 - Regeneration? Larger at the LHC than at RHIC
 - CNM effects
- Indication of smaller suppression for $\Upsilon(2S+3S)$ at RHIC than at the LHC

$\Upsilon(1S)$, $\Upsilon(2S,3S)$ R_{AA} vs p_T

- Consistent with no p_T dependence
- Similar suppression for Y(1S) at RHIC and the LHC
- Indication of smaller suppression for $\Upsilon(2S+3S)$ at RHIC than at the LHC

Data to model comparison

- Krouppa, Rothkopf, Strickland Phys. Rev. D 97, 016017
- Lattice QCD-vetted potential for heavy quarks in hydrodynamic-modeled medium
- No regeneration, no CNM effects

- De, He, Rapp
 Phys. Rev. C 96, 054901
- Quarkonium in-medium binding energy described by thermodynamic T-matrix calculations with internal energy potential (strongly bound scenario)
- Includes both regeneration and CNM efects
- Y(1S) well described;
 - Y(2S+3S) underestimates data in 30-60% centrality by Rothkopf model 15

Summary

- J/ψ in p+Au at 200GeV
 - R_{pAu} favors additional nuclear absorption on top of nPDF
- J/ψ in Au+Au at 200GeV
 - R_{AA} described qualitatively by models including dissociation and regeneration
 - Suppression observed at p_T>5 GeV/c due to dissociation
 - Low p_T (<100MeV) enhancement consistent with coherent photoproduction

- Υ production in p+Au at 200 GeV
 - Indication of Υ(1S,2S,3S) suppression
- Y production in Au+Au at 200GeV
 - Stronger suppression of $\Upsilon(2S + 3S)$ than $\Upsilon(1S)$
 - Consistent with sequential melting
 - No p_T dependence of suppresion observed

STAR

Nuclear modification of non-prompt J/ψ

- Non-prompt J/ψ fraction in Au+Au 200GeV of about 0.03-0.06 extracted
- Strong suppression of B → J/ψ at high p_T (> 5 GeV/c) observed