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Motivation:

Verification of universality of
NRQCD LDMEs to two loops



Gauge-completed NRQCD LDMEs

Nayak, Qiu, Sterman (NQS) (2005, 2006):
Color-octet NRQCD long-distance matrix elements (NRQCD LDMEs)
should be generalized to include Wilson (eikonal) lines for gauge-

invariant definition of them:
(O11) = (0|x"(0)n,ct(0)Prr(py T (0)5ir, X (0)]0)

¢ gauge completion & (0)

<OH> — <O’XT(O)’{TL,C¢(O)(I)§A) ( )chH(P)q) ( )bawT( ) naX( )‘O>

n

The Wilson lines ®{*(0),, are path-ordered exponential, constructed
from the gauge field in adjoint matrix representations AV = "7Y4,,

o' (0),, = Pexp {—igs /O dr - A (zx)}
ba

¢ is the velocity of the source, and its direction is arbitrary
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Eikonal line

- The operator @;"(0) represents eikonal lines in Feynman diagrams

» This eikonal line makes NRQCD LDMEs gauge invariant

* A semi-hard gluon ( ) with energy of order m¢ in QQ rest frame
can connect to the Q@ pair through soft gluon exchanges (blue).

The eikonal line is the soft approximation for it
P | P

* The soft gluons are nonperturbative so they must be absorbed into the
NRQCD LDMEs, and the only way to do is to introduce the Wilson line
part of the LDMEs
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Universality of NRQCD LDMEs
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* The direction of Wilson line is the direction of the semi-hard gluon

* If the corresponding NRQCD LDME were to depend on the direction of
the Wilson line, then there would be a different LDME for each direction
of the hard gluon, that is, no universality of the LDME.

* So, as a necessary condition for NRQCD factorization to hold, we
require the IR poles of gauge-completed NRQCD LDMEs to be
independent of the direction of Wilson line ¢



Covariant check of NRQCD factorization

* Using the light-cone variable integrations, Nayak, Qiu,and Sterman
computed the IR poles of the fragmentation function for

g — QQM + X to two loops.

* NQS found that there are non-canceled IR poles from the non-
topologically factorized diagrams at NNLO, and they are independent of ¢

Examples of the non-topologically factorized two loop diagrams

» Our motivation is to provide independent check of the complicated light-
cone calculation using the Lorentz covariant integrations.



Method of calculations:

Lorentz covariant integrations



Kinematics

Py and P are the momenta of quark
and antiquark (top), respectively, and
the eikonal gluon (bottom) carries ¢
momentum

> ; ki is the total momentum carried
by the soft gluons making octet Q¢
pair into color singlet

* our kyis ky — ko in NQS

14 . . .
N * The available Lorentz invariant
e P quantities are
2
P, - P P/ P/
P;y=P;, (*=0, a= 122, c= 12, d= "2
One of NNLO diagrams of NRQCD LDMEs Py P
for octet to singlet transition
/-independent ¢-dependent

We will show the /-independence of the remaining IR poles
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Soft approximation

* Since we are considering IR poles, we take the soft approximation for k;,
because the soft approximation reproduces all IR poles.

* In this approximation, perturbative Feynman rules for quark-gluon
interaction are modified as

* replace () and Q propagators and vertices with eikonal propagators and vertices

/ J !
> > . ii(]s " ‘T”) _pH .
Pi+k (2 Py Py - ki+ e I8\ Il

vk + for quark and - for antiquark
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Covariant phase-space integrations

 The soft approximation removes the kinematic bound on the phase

space, so the phase-space integrations of final-state real gluons are given
by

dk; 2\ 1.0 _
| G20 (k) = [ P8 f(k)
™) ki
- Applying Feynman parameters, we can show that the phase-space

integrations are written in the following forms, where p and M~ are
functions of external momenta and Feynman parameters

* In fact, the phase-space integrations for our problems can be done in
terms of the following two integral tables:

/ PS 1 1 F(S—d—I—Q)F(g —1) 1 1
k (2p - by + M? £ ig)® B (47r)% ['(s) (p? + Z'g)%—l (M2 + jg)s—d+2’
/ pq k! 1 D(s—d+1I(5) p* 1

k (2p - k; + M2 £ ig)s (47T)% ['(s) (p? Z-g)g (M?2 =+ je)s—d+1"
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Method of calculations

Compute cut diagrams with soft approximation, with Feynman gauge
|dentify the IR poles by introducing covariant UV cutoffs
Use dimensional regularizations to regulate IR and UV divergences

Perform loop and phase-space integrals in covariant way and the
remaining parameter integrations using standard techniques for multi-
loop integrals such as MB integrals and sector decomposition

Sum over all of gluon connections to quarks (P, P, symmetrization)

> > >

Py Py
82

We need only the 2 times of real parts of the diagrams because we should
sum the corresponding complex conjugate cut diagrams

Therefore, for diagram type 7, we compute 7 = 2Re (Z szPg)
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Two-loop Abelian diagrams

* We have 4 types of Abelian two-loop diagrams:

P, P
.AgplPQ Bll 2

A2 = E :AP1P2 no single gluon connection
T 1

cut 2

between quarks

PP
Ci

PP
CQ

CPl Py _ Z C-Pl P, gluon connection
T (]

between quarks

cut 2

IR poles emerge only from the soft gluon connections between two quarks
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Two-loop non-Abelian diagrams

P P — P Ps
gnr: = N ¢;

cut 2

Py P>
&

+ Rearranging numerator terms due to triple-gluon vertex, we write &£;**>

5{31132 = &0+ 510 + &11 + &9

Py -0) PP

5=—44€/PS PS i , nceled rtof £ 171
10 gsH . ke LP1 (k14 k) +ig](€- ky —ie)[(k1 + ko)2 + ig] canc by part o 81

ro_ 4, 4de (P2 . l) PP

Elo = ~9: 4 /,ﬁ PS b P5 (Py - ko — i) (0 - k1 —ie)[(k1 + ko)2 + ie]’ canceled by part of 81 22

ey - O)(Py - Py) +2(ky - P)(Py - £) — 2(ks - P)(Py - 0)
P - ky — i€)[P1 . (kl + kg) + ZS](E k1 — Z€)[(l€1 + k2>2 + Z'E]’

Eil = 93#46/ PS [ PS
k1 ke (

U ks - O)(Py - Py)
Eg = g* 46/ PS [ PS
2= 958 LI O Py kg — i) [Py (k1 + ko) +ig) (£ ki — ie)[(ky + K2)® + i)

* In this rearrangement, we can eliminate the collinear to ¢ singularities
even before performing integrations, and so we can remove the most

singular divergence 1/¢*. But, we have to deal with 1/¢%and 1/¢2 poles
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Results of calculations:

uncanceled IR poles
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Diagram A

The color factors of these diagrams vanish = no IR poles

A = 2Re ZAP’L'PJ' =0

)
J color
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Diagram b

‘\

Py Py
Bl

- After PP, symmetrization and summation over cut diagrams, we find
that the remaining poles are pure imaginary, so there are no remaining
real IR poles

B=2Re|) B"F = O(e%)

.
J color
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Diagram C

color factors

8 )
iN.(N? —1)
3 .

CC.Plpg — CC‘.Plpl — —|_

CCP2P1 — CCP2P2 _ —
P1P2 P1P2 7 1
C; Cy

* The first diagrams that yield the uncanceled IR poles

- After 1> symmetrization, we obtain

C = 9Re (;szpj) _ VLQPE(QC)QIG [ 1 N z] a? [Nc(]\fc2 — 1)] [1 ~ alog (a + Va2 —1)

A4 7'('26%\/ 4 k1 4€IR 4 a2 —1

color

* We identified the UV and IR poles with additional UV cutoffs

» The UV poles should be absorbed into the short-distance coefficients of
LDME, and the IR pole is inherently the |-loop contribution to LDME
(topologically factorized as the LO diagram)
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Diagram D

color factors

iN.(N? — 1
CDQPQ = CDP1P1 = — ( 3 )
iN.(N? — 1
Cprr = Cprary =+ ( 3 )
N
D1P1P2

 Diagrams D have very similar IR structure to C, but contains no UV poles

 The resulting IR poles are

Preliminary
D = 9Re pripj _ a? [N.(N?-1) 1_alog(a—|—\/a2_1)
N — derr 4 a? —1
“ color

discrepancy with NQS’s result (NQS, PRD, 2005)
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Diagram &

color factor
NC(NC2 o 1)

£ = 2Re ZgPin _ o’ _]Vc(]\fc2 —1) - alog (a, + m)
- 4€IR 4 a2 — 1

.
J color

agrees with NQS’s result (NQS, PRD, 2006)

* In computing the above IR poles, we encountered very complicated
intermediate expressions involving hundreds of dilogs and trilogs that
cancel in the end. The analytic proof for the cancellation is accomplished

through the use of many dilog and trilog identities, one of them is

_ _ 1 — 1 —
Lis(u) + Lig(v) — Lig(uv) — Lisy i Lis iy I log “ log 7
1 — uv 1 — uv 1 — uv 1 — uv

which is essential for 1/¢* pole cancellation
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Discussions

IR poles from the non-topologically factorized two-loop diagrams:

A=0 B=0()

o [/221312(2(:)2]6[ 1 7] o [NC(Ng—l)] {1alog(a—|—\/a2—1)

A4 7'('26%\/ Z k1 4€IR 4 CL2 — 1

D a? [N.(N?-1) _1 alog (a + va? —1)
e | 1 a? — 1
o a? [ N.(NZ-1) . alog (a + va? — 1)
 der | 4 a’? — 1
» All IR poles are independent of the direction of ¢ note that @ = P1]$12P2 -
. . log (a+ vaZ — 1 41, 8
+ The velocity dependent factor is |1—— (\227_6; )] = —3v" = v+ 0()

+ The inherently two-loop contributions to LDMEs are from D and £

and they cancel: DiLE— 0(60) Preliminary
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Conclusions

* Our covariant method was intended to be an independent approach and
expected to give simpler calculations than the light-cone integrations

- However, the covariant method is more complicated because, in contrast
with the light-cone method, cancellation of real-real diagrams against part
of real-virtual diagrams, and additional cancellation of poles from some of
the residues of light-cone variable integrations through symmetry cannot

be made manifest

* Work still in progress on understanding the simplicity of the final result
and the discrepancy with NQS results for p

Thank you!
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Backup slides
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NRQCD and Fragmentation function

Assuming the NRQCD factorization of the fragmentation function,
we can write the fragmentation function as

where the conventional NRQCD LDMEs are given by
<O7Ij> = <O‘XTlin¢7DH(p)¢TKJ;1X‘O> Kon, Ky, : Pauli and color matches

dg%QQ[n](z) is the fragmentation short-distance coefficients, and since
they are independent of hadronic states H, they can be obtained from
the matching of the free Q) fragmentation functions:

Dlg — QQI(z, pa) Z dg—>QQ 2)(0%9)
full QCD NRQCD

\m/

sharing identical IR structures
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Convergent factor

cut
‘/
a ‘ (

> >
{ {
The eikonal line propagator of the fragmentation function on the cut is
proportional to the +-momentum conserving delta function:

5[€(k—P1—P2—ZZ]{iZ)]
Integrating delta function over all allowed values of /- (P, + P,), we obtain
010 (k—Xk;)]

And integrating over all value i with an IR conserving weight function,
AQ
(- k) + A2

/OO d(l - k)w(l- k)0l (k- Xik;)| =

w(l - k) =

we obtain A2

This convergent factor works as a UV cutoff and allows us to make
manifestly covariant phase-space integration
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Feynman rules for eikonal line

1, b

O
S
= ¢

w' b

xO
xXO

|

xO J
2 v k

<: k
(= cut -
(= i,
& ‘ a a
> > > >
(—k ¢ | (+ K
propagator vertex Cut line propagator
—1
+q. PH abc
LHS of cut (k) + ic gst" f
RHS of cut U | g pate
{-k"+ e
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Two-loop non-Abelian diagrams

P

Py
>

P Py
&

- Rearranging numerator terms due to triple-gluon vertex,

51PlP2 ={E10 + 1o+ 893P1MP2V€[){ (JapGuv + 290p9vp — 29av9up) 11 + (290p9pr) 532}’

E3 1% =0 + Eholt 89§P1“P2”€p{ (GapGuw + 29angvp = 29avgup) €21 + (29apGuv) €33 }

depend only on P; or P, = canceled by P, P, or P, P, diagrams

- &;5 is the part of the integral £; "> whose integrand proportional to &

* The contributions proportional to /% vanish:

PPyl (GapGur + 29an9vp — 29avup) €4 =0 and Py PyeP (2gapg,u0) L™ = 0.

27



