Breakdown of NRQCD Factorization in Processes Involving Two Quarkonia and its Cure

Bernd Kniehl

II. Institut für Theoretische Physik, Universität Hamburg

Based on collaboration with Zhi-Guo He and Xiang-Peng Wang

PRL121(2018)172001

QWG 2019, Torino, 13–17 May 2019
Outline

1 Background

2 NRQCD factorization breakdown for bottomonium decay into charmonium

3 NRQCD factorization breakdown for double quarkonium production

4 Possible approach to solve the problem

5 Summary
History of factorization

- In CSM, uncancelled IR divergences in decays of P-wave states at LO and in relativistic corrections to decays of S-wave states at NLO [Barbieri et al. 76]; also for $L > 1$ [Belanger et al. 81].

- In NRQCD factorization formalism, IR divergences absorbed into CO LDMEs [BBL 95].

- Still uncancelled IR divergences in exclusive decay $\chi_{cJ} \to l^+ l^-$ [Yang et al. 04] and double charmium production in $e^+ e^-$ annihilation [Bodwin et al. 08].

- In exclusive processes, IR divergence appears in loop integration of virtual corrections. They either disappear in limits $m_c/m_b, m_c/\sqrt{s} \to 0$ or can be eliminated in pNRQCD [Beneke et al. 09].
New type of IR divergence in $\Upsilon \rightarrow$ charmonium + X

- In NRQCD factorization, for $H = \eta_c, J/\psi, \chi_{cJ}$, ...

\[
\Gamma(\Upsilon \rightarrow H + X) = \sum_{m,n} \hat{\Gamma}(b\bar{b}(m) \rightarrow c\bar{c}(n) + X) \langle \Upsilon | \mathcal{O}(m) | \Upsilon \rangle \langle \mathcal{O}^H(n) \rangle
\]

- In single P-wave case, if either m or n is P wave, IR divergence can be absorbed into NRQCD LDMEs.
- But not if m and n are both P wave! Consider e.g. $b\bar{b}(3P[^8]_{J_b}) \rightarrow c\bar{c}(3P[^1]_{J_c}) + gg$.
\[b\bar{b}(^3P_{J_b}^{[8]}) \rightarrow c\bar{c}(^3P_{J_c}^{[1]}) + gg \]

- Calculate SDCs directly via covariant spin project method and do phase space integration for soft region analytically.
- Divide divergent results into 3 parts,
 \[\Gamma_{\text{div}}(J_c) = \Gamma_{1}^{\text{div}} + 9\Gamma_{2}^{\text{div}}(J_c) + \Gamma_{3}^{\text{div}}(J_c), \]
 where

\[\hat{\Gamma}_1^{\text{div}} = \frac{-8\alpha_s}{27\pi m_c^2} \frac{1}{\epsilon_{\text{IR}}} \times \frac{5\pi^2\alpha_s^3(3r^4 + 2r^2 + 7)}{72m_b^7r^3(1 - r^2)}, \]

\[\hat{\Gamma}_2^{\text{div}}(J_c) = \frac{-5\alpha_s}{9\pi m_b^2} \frac{1}{\epsilon_{\text{IR}}} \times \begin{cases} \frac{\pi^2\alpha_s^3(1-3r^2)^2}{81m_b^7r^3(1-r^2)}, & J_c = 0, \\ \frac{2\pi^2\alpha_s^3(r^2+1)}{81m_b^7r^3(1-r^2)}, & J_c = 1, \\ \frac{2\pi^2\alpha_s^3(6r^4+3r^2+1)}{405m_b^7r^3(1-r^2)}, & J_c = 2, \end{cases} \]
\[b \bar{b}(^3 P_{J_b}^{[8]}) \rightarrow c \bar{c}(^3 P_{J_c}^{[1]}) + gg \]\[\text{and} \]
\[
\hat{\Gamma}^\text{div}_3(0) = -\frac{10\pi\alpha_s^4}{81 m_b^9 r^3 (1 - r^2)^4 \epsilon_{IR}} \times (3r^4 - 10r^2 + 3) (r^4 - 4r^2 \ln r - 1),
\]
\[
\hat{\Gamma}^\text{div}_3(1) = \frac{10\pi\alpha_s^4}{81 m_b^9 r^3 (1 - r^2)^4 \epsilon_{IR}} \left[-r^6 + 9r^4 - 7r^2 + 4r^2 (r^4 - 3r^2 - 2) \ln r - 1 \right],
\]
\[
\hat{\Gamma}^\text{div}_3(2) = \frac{2\pi\alpha_s^4}{81 m_b^9 r^3 (1 - r^2)^4 \epsilon_{IR}} \left[6r^8 + 23r^6 - 27r^4 + r^2 - 4r^4 (9r^2 + 11) \ln r - 3 \right],
\]

with \(r = m_c/m_b \).
\[b\bar{b}(3P_{J_{b}}^{[8]}) \rightarrow c\bar{c}(3P_{J_{c}}^{[1]}) + gg \]

- \(\Gamma_{1}^{\text{div}} \) is from soft gluon emitted and absorbed by same charm (anti)quark, can be absorbed by NLO QCD corrections to \(\langle \mathcal{O}\chi_{cJ}(3S_{1}^{[8]}) \rangle \) in \(b\bar{b}(3P_{J_{b}}^{[8]}) \rightarrow c\bar{c}(3S_{1}^{[8]}) + g \).

- \(\Gamma_{2}^{\text{div}}(J_{c}) \) is from soft gluon emitted and absorbed by same bottom (anti)quark, can be absorbed by NLO QCD corrections to \(\langle \gamma|\mathcal{O}(3S_{1}^{[8]})|\gamma \rangle \) in \(b\bar{b}(3S_{1}^{[8]}) \rightarrow c\bar{c}(3P_{J_{c}}^{[1]}) + g \).

- However, \(\Gamma_{3}^{\text{div}}(J_{c}) \) is from soft gluon emitted and absorbed by different heavy quarks. There are no LDMEs to describe such effects yet!

Unlike for exclusive \(P \)-wave production, \(\Gamma_{3}^{\text{div}}(J_{c}) \) do not vanish for \(r \rightarrow 0 \)!
More general case

- $\Gamma^{\text{div}}_3(J_c)$ is due to interference of diagrams with soft-gluon emission by P-wave $b\bar{b}$ and $c\bar{c}$ Fock states, which can appear in NRQCD treatment of any inclusive bottomonium decay to charmonium. NRQCD factorization will break down for any such process at some order of v_c^2 and v_b^2.

- In particular, for $\chi_{bJ} \rightarrow \chi_{cJ} + X$ production this happens already at LO in v_b^2 and v_c^2.

What will happen for double charmonium production at hadron collider?
\[e^+ e^- \rightarrow c\bar{c}(3P_{J_1}^{[8]}) + c\bar{c}(3P_{J_2}^{[1]}) + g \]

- For prompt double \(J/\psi \) hadroproduction, soft-gluon emission starts at NLO in \(\alpha_s \), e.g. \(gg \rightarrow c\bar{c}(3P_{J_1}^{[8]}) + c\bar{c}(3P_{J_2}^{[8]}) + g \).
- There will be additional IR divergences to be cancelled by virtual corrections. \(\rightsquigarrow \) Difficult to calculate.
- Alternatively, consider \(J/\psi + \chi_c J \) production in \(e^+ e^- \) annihilation through \(e^+ e^- \rightarrow c\bar{c}(3P_{J_1}^{[8]}) + c\bar{c}(3P_{J_2}^{[1]}) + g \) for illustration:
\[e^+e^- \rightarrow c\bar{c}(^3P_{J_1}^{[8]}) + c\bar{c}(^3P_{J_2}^{[1]}) + g \parallel \]

- Again, 3 sources of infrared divergences:
 - Squared amplitude where gluon is attached to \(c\bar{c}(^3P_{J_2}^{[1]}) \): \(\sigma_{1\text{div}} \)
 - Squared amplitude where gluon attached to \(c\bar{c}(^3P_{J_1}^{[8]}) \): \(\sigma_{2\text{div}}(J_2) \)
 - Interference between these two amplitude parts: \(\sigma_{3\text{div}}(J_2) \)

- Total result:
 \[
 \sigma^{\text{div}} = \sigma_{1\text{div}} + 9\sigma_{2\text{div}}(J_2) + \sigma_{3\text{div}}(J_2)
 \]

 where

 \[
 \hat{\sigma}^{\text{div}}_1 = -\frac{8\alpha_s}{27\pi m_c^2} \frac{1}{\epsilon_{\text{IR}}} \frac{2^{10}\pi^3 \alpha_s^2}{729s^5r^6} \times

 (864r^{10} - 144r^8 - 1568r^6 + 1224r^4 - 130r^2 + 27),
 \]
\[e^+ e^- \rightarrow c \bar{c}(^{3}P_{J_1}) + c \bar{c}(^{3}P_{J_2}) + g \]

\[
\hat{\sigma}_2^{\text{div}}(J_2) = -\frac{4\alpha_s}{3\pi m_c^2} \frac{1}{\epsilon_{\text{IR}}} \times \frac{2^{18} \pi^3 \alpha^2 \alpha_s^2 S}{19683 s^5 r^4}
\]

\[
\begin{cases}
(144r^8 + 152r^6 - 428r^4 + 182r^2 + 1), & J_2 = 0, \\
8(18r^6 + 13r^4 - 12r^2 + 2), & J_2 = 1, \\
\frac{2}{5}(360r^8 + 308r^6 - 188r^4 + 20r^2 + 1), & J_2 = 2,
\end{cases}
\]

\[
\hat{\sigma}_3^{\text{div}}(0) = \frac{2^{19} \pi^2 \alpha^2 \alpha_s^3}{3^8 s^6 r^4 \epsilon_{\text{IR}}} \times [(144r^8 + 184r^6 - 504r^4 + 170r^2 + 33) S
\]

\[+8 \left(72r^{10} + 56r^8 - 284r^6 + 149r^4 + r^2\right) T],
\]
\begin{equation}
\hat{\sigma}_3^{\text{div}}(1) = \frac{2^{19} \pi^2 \alpha^2 \alpha_s^3}{3^8 s^6 r^2 \epsilon_{\text{IR}}} \times \left[(144r^6 + 28r^4 - 176r^2 + 43) S \\
+ (576r^{10} - 176r^8 - 792r^6 + 424r^4 - 48r^2) T \right],
\end{equation}

\begin{equation}
\hat{\sigma}_3^{\text{div}}(2) = \frac{2^{19} \pi^2 \alpha^2 \alpha_s^3}{5 \cdot 3^8 s^6 r^4 \epsilon_{\text{IR}}} \left[(720r^8 + 452r^6 - 696r^4 + 7r^2 - 15) S \\
+ (2880r^{10} + 368r^8 - 3560r^6 + 1856r^4 - 56r^2) T \right],
\end{equation}

where $r = 2m_c/\sqrt{s}$, $S = \sqrt{1 - 4r^2}$, and $T = \tanh^{-1} S$.

\[e^+ e^- \rightarrow c \bar{c} \left(^3P_j^{[8]} \right) + c \bar{c} \left(^3P_j^{[1]} \right) + g \text{ IV} \]
\[e^+ e^- \rightarrow c\bar{c}(^3P_j^{[8]}) + c\bar{c}(^3P_j^{[1]}) + g \, V \]

- \(\sigma_1^{\text{div}} \) is cancelled upon including NLO QCD corrections to
 \(\langle O_{\chi c J}(^3S_1^{[8]}) \rangle \) in \(e^+ e^- \rightarrow c\bar{c}(^3P_{J_1}^{[8]}) + c\bar{c}(^3S_1^{[8]}) \).

- \(\sigma_2^{\text{div}}(J_2) \) is cancelled upon including NLO QCD corrections to
 \(\langle O_{J/\psi}(^3S_1^{[1]}) \rangle \) in \(e^+ e^- \rightarrow c\bar{c}(^3S_1^{[1]}) + c\bar{c}(^3P_{J_2}^{[1]}) \).

- \(\hat{\sigma}_3^{\text{div}}(J_2) \) is left!

- Behaviors for \(r \rightarrow 0 \): \(\sigma_1^{\text{div}} \propto \frac{1}{r^7}, \sigma_2^{\text{div}} \propto \frac{1}{r^5}, \sigma_3^{\text{div}} \propto \frac{1}{r^4} \).

- Although new types of singularities will not disappear, they are less singular for \(r \rightarrow 0 \).
New type of IR divergence originates from interference of diagrams where soft gluon is attached to different $Q\bar{Q}$ states, independent of initial state and not requiring the quark pairs to have same flavor.

We predict that this will also appear in NLO QCD corrections for double J/ψ and $J/\psi + \Upsilon$ hadroproduction.

However, structure of new IR divergence can be more complicated because more channels are involved.

For $gg \rightarrow c\bar{c}(3P_{Jc}^{[8]}) + b\bar{b}(3P_{Jb}^{[8]}) + g$, there will be 4 pairings:

$c\bar{c}(3S_1^{[8]}) + b\bar{b}(3P_{Jb}^{[8]})$, $c\bar{c}(3S_1^{[1]}) + b\bar{b}(3P_{Jb}^{[8]})$, $c\bar{c}(3P_{Jc}^{[8]}) + b\bar{b}(3S_1^{[1]})$, and $c\bar{c}(3P_{Jc}^{[8]}) + b\bar{b}(3S_1^{[8]})$, which lead to more interference terms.
Basic idea to solve the problem I

- Recall that factorization implies complete separation of perturbative and nonperturbative effects.
- First find a way to separate IR singular terms like $\Gamma_3^{\text{div}}(J_c)$ and $\sigma_3^{\text{div}}(J_2)$ into contributions from hard- and soft-scale regimes.
- 2 pairs cannot be at rest simultaneously. \leadsto Use covariant form of NRQCD Lagrangian:

$$\mathcal{L}^{\text{LO}}_{\text{NRQCD}} = \bar{\psi}_v \left[i v \cdot D + \frac{(iD^\mu)(iD_{\perp \mu})}{2m} \right] \psi_v + \bar{\chi}_v \left[-i v \cdot D + \frac{(iD^\mu)(iD_{\perp \mu})}{2m} \right] \chi_v,$$

where $v^\mu = p^\mu / m$ with m heavy-quark mass and p^μ $Q\bar{Q}$ momentum.
Basic idea to solve the problem II

- ψ_v and χ_v are nonrelativistic heavy-quark and -antiquark 4-component spinor fields satisfying $\not\!\!\! v \psi_v = \psi_v$ and $\not\!\!\! v \chi_v = -\chi_v$.
- \perp component of vector a^μ is defined as $a_\perp^\mu = a^\mu - \nu^\mu \nu \cdot a$.
- Creation and annihilation of heavy-quark pair surely take place at short distance. 1-loop correction diagrams:

Interference effect is described in last 2 panels.
To describe vertex, introduce new operators:

\[\psi_{b,v_1} \mathcal{K}^{\mu_1 \nu_1} T^{a_1} \bar{\chi}_{b,v_1} \psi_{c,v_2} \gamma^\nu_2 T^{a_2} \chi_{c,v_2}, \]

\[\psi_{b,v_1} \gamma_\Sigma T^a \bar{\chi}_{b,v_1} \psi_{c,v_2} \mathcal{K}^{\mu_2 \nu_2} \chi_{c,v_2}, \]

and charge conjugates for \(b\bar{b}(3P_{[8]}^J) \rightarrow c\bar{c}(3P_{[1]}^J) + gg \) and \(\bar{c}c(3P_{[1]}^J) + g. \)

\(\mathcal{K}s \) are defined as

\[\mathcal{K}_0^{\mu \nu} = \frac{g^{\mu \nu} - \nu^{\mu} \nu^{\nu}}{\sqrt{3}} \left(-\frac{i}{2} \mathcal{D}_f \right), \]

\[\mathcal{K}_1^{\mu \nu} = -\frac{i}{2} \left(\mathcal{D}_f \left[\frac{\mu}{\Sigma} \frac{\nu}{\Sigma} \right] \right), \]

\[\mathcal{K}_2^{\mu \nu} = -\frac{i}{2} \left(\mathcal{D}_f \left[\frac{\mu}{\Sigma} \frac{\nu}{\Sigma} \right] \right), \]

\[\mathcal{K}_{\mu \nu} = - \frac{i}{2} \left(\mathcal{D}_f \left[\frac{\mu}{\Sigma} \frac{\nu}{\Sigma} \right] \right), \]

with

\[a^{[\mu \nu]} = \frac{1}{2} (a^{\mu \nu} - a^{\nu \mu}), \]

\[a^{(\mu \nu)} = \frac{1}{2} (a^{\mu \nu} + a^{\nu \mu}) - \frac{g^{\mu \nu} - \nu^{\mu} \nu^{\nu}}{3} a \cdot b. \]
One loop corrections of soft gluon

- Derive Feynman rules from Lagrangian and calculate loop integrals. E.g. the third panel:

\[
I = -ig_s^2 \mu^{4-D} \int \frac{d^D l}{(2\pi)^D} \frac{1}{2} \left[\mathbf{v}_1 + \frac{(2q_1 + l)_\perp}{2m_1} \right] \cdot \left[\mathbf{v}_2 + \frac{(2q_2 + l)_\perp}{2m_2} \right] \frac{1}{l \cdot \mathbf{v}_1 + \frac{(l+q_1)^2}{2m_1}} \frac{1}{l \cdot \mathbf{v}_2 + \frac{(l+q_2)^2}{2m_2}}.
\]

- Although numerically \(m_b \approx 3m_c \), assume that \(m_c \gg m_b v_b \) to ensure that nonrelativistic approximation still applies to charmonium.

- Expand integrand in series of \(1/m_i \) and drop terms of order \(1/m_i^2 \) and higher.
We get

\[I = I_0 + \frac{\alpha_s \mu^{4-D}}{\pi m_1 m_2} \left(\frac{1}{\epsilon_{\text{UV}}} - \frac{1}{\epsilon_{\text{IR}}} \right) \]

\[\times \left[\ln(\omega + \sqrt{\omega^2 - 1}) - \omega \sqrt{\omega^2 - 1} \right] \frac{q_1 \cdot q_2}{2(\omega^2 - 1)^{3/2}} \]

\[+ \frac{(\omega^2 + 2) \sqrt{\omega^2 - 1} - 3\omega \ln(\sqrt{\omega^2 - 1} + \omega)}{2(\omega^2 - 1)^{5/2}} (v_1 \cdot q_2)(v_2 \cdot q_1) \],

where \(\omega = v_1 \cdot v_2 \)

\(I_0 \) disappears upon summation over all diagrams.
Loop integrals are process independent, although results depend on ω.

UV divergence can be removed through operator renormalization.

Multiply with corresponding SCDs and decompose tensor and color structures into basis of total-angular momentum and color states.

IR-singular parts exactly match those in $\Gamma_3^{\text{div}}(J_c)$ and $\sigma_3^{\text{div}}(J_2)$!

I.e. it is possible to construct general factorization formalism within NRQCD to describe processes involving 2 or more heavy quarkonia.
Summary and outlook

- We illustrated via 2 examples, $\Upsilon \rightarrow \chi_{cJ} + X$ and $e^+e^- \rightarrow J/\psi + \chi_{cJ} + X$, that there are uncancelled IR divergences in standard formulation of NRQCD factorization approach.
- We extended the conclusions to any subprocess involving 2 P-wave Fock states.
- We introduced new types of operators and showed that their NLO QCD corrections precisely reproduce the uncancelled IR divergences.
- Much more further work is needed to construct a generalized NRQCD factorization formalism and to investigate its phenomenological impact, especially for double quarkonia hadroproduction.

Thank you!