Recent CMS results on Quarkonium in pPb and PbPb

Andre Ståhl on behalf of the CMS Collaboration

T.W. Bonner Laboratory, William Marsh Rice University

13th International Workshop on Heavy Quarkonium

Quarkonia in Pb-Pb Collisions

Quarkonia are produced in the early stages of the collision

The Quark-Gluon Plasma is expected to modify the quarkonium production

QGP
()()QGP
()()QGP
()Image: Comparison Debye screeningImage: Comparison Debye screening

QWG 2019

13/05/19

Quarkonia are good probes of the medium evolution

CMS

Quarkonia in pPb Collisions

- Study of quarkonia in pPb allows to probe Cold Nuclear Matter effects:
 - ➤ Initial state energy loss
 - > Nuclear PDF modifications
 - > Nuclear absorption

Excited States in Heavy-Ion Collisions

- The study of $\psi(2S)$, Y(2S) and Y(3S) brings additional information:
 - > Excited states are **less tightly bounded** than the 1S states
 - More suppressed in the QGP compared to J/ψ or Y(1S)
 - > Models including nPDF and energy loss effects **predict similar suppression** for $\psi(2S)$ as for J/ ψ

Prompt and Nonprompt Charmonia

• Prompt Charmonia:

Directly affected by the QGP

• Non-Prompt Charmonia:

Reflects energy loss of b quarks in the QGP

Separation based on pseudo-proper decay length $(I_{J/\Psi})$

$$\ell_{J\!/\!\psi} = \frac{m_{J\!/\!\psi}}{p^{\mu\mu}}L$$

CMS

Outline

• Y(nS) in PbPb at 5.02 TeV

≻ Phys. Lett. B 790 (2019) 270

• J/ψ in PbPb at 5.02 TeV

≻ Eur. Phys. J. C 78 (2018) 509

FINA

- Prompt $\psi(2S)$ in pPb at 5.02 TeV
 - > Phys. Lett. B 790 (2019) 509

• Prompt J/ ψ in high-multiplicity pPb at 8.16 TeV

≻ Phys. Lett. B 791 (2019) 172

Y(nS) in PbPb at 5 TeV

Clear suppression of bottomonium states in PbPb collisions compared to pp

13/05/19

- Y(nS) suppression increases with collision centrality
- Weakly bound states more suppressed -> $R_{AA}(Y(3S)) < R_{AA}(Y(2S)) < R_{AA}(Y(1S))$
- Still no observation of Y(3S) mesons in PbPb collisions

CMS

QWG 2019

6

• Comparisons with an hydrodynamic model (Krouppa et al) and a transport model (Du et al), show good agreement with the measurements

13/05/19

CMS

- Hint of less suppression of Y(1S) at high p_T
- No significant dependence of Y(nS) RAA on rapidity

QWG 2019

8

J/ψ in PbPb at 5 TeV

Prompt J/ψ modification in PbPb

• Similar p_T trend between different rapidities bins

CMS

- Less suppression at low p_T in central events (cent < 30%)
 - Regeneration of J/ ψ at p_T > 3 GeV/c ?

QWG 2019

Prompt J/ψ modification in PbPb

• Hints of increasing J/ ψ R_{AA} towards high p_T

CMS

- Similar level of suppression between prompt J/ ψ and D⁰ mesons
 - Contribution from energy loss on J/ψ ?

QWG 2019

Nonprompt J/ψ modification in PbPb

• Less suppression of nonprompt J/ ψ at high p_T and more central collisions

QWG 2019

13/05/19

• No significant dependence on rapidity

CMS

Nonprompt J/ψ modification in PbPb

- Less suppression of nonprompt J/ ψ at lower p_T

CMS

 Similar suppression at high p_T between open beauty, open charm and light hadrons -> Universal flavour dependence of E_{loss} at high p_T ?

QWG 2019

Prompt \psi(2S) in pPb at 5 TeV

Prompt ψ(2S) in pPb

• Ratio: R_{pPb} ($\psi(2S)$) < R_{pPb} (J/ ψ) especially at backward (Pb-going direction)

• Different suppression between J/ ψ and ψ (2S) could be consistent with FS inelastic interactions of ψ (2S) with comoving particles in the medium

13/05/19

CMS

Outline

Prompt J/ψ in high-multiplicity pPb at 8 TeV

QWG 2019

Charm quark dynamics in pPb

Heavy quark collectivity in PbPb reflects the presence of QGP medium and its response to the initial collision geometry.

Observation of charm flow at high-multiplicity pPb

 $0 < v_2(D^0) < v_2(K_s)$

Collectivity in small systems from charm or light quarks?

CMS

13/05/19

Measurements of J/ψ flow needed to complete the picture of charm dynamics

Prompt J/ψ v₂ in high-multiplicity pPb

- Measure J/ ψ elliptic flow by fitting the dimuon invariant mass and v₂ spectra
- Prompt J/ ψ extracted by selecting candidates with low decay lengths (I_{J/ ψ})

CMS

QWG 2019

Prompt J/ψ v₂ in high-multiplicity pPb

- Observation of prompt J/ψ flow in high-multiplicity pPb -> charm collectivity
- Smaller v₂ of charm quarks compared to light quarks

CMS

QWG 2019

Prompt J/ψ v₂ in high-multiplicity pPb

• Non-zero J/ ψ v₂ in model calculations (Du, Rapp) arise from FS interactions in the elliptic fireball, but significantly underpredicts the CMS results.

13/05/19

• Initial-state (or pre-equilibrium) effects beyond QGP?

CMS

SUMMARY

Cold Nuclear Matter Effects: pPb 34.6 nb⁻¹, pp 28.0 pb⁻¹ 5.02 TeV 1.6 Prompt ψ(2S) CMS 1.4 • 6.5 < p_ < 10 GeV/c 1.2 $\mathbf{R}_{\mathsf{pPb}}$ 0.8 0.6 0.4 Prompt J/\u03c6 [EPJC 77, 269 (2017)] 0.2 ■ 6.5 < p_ < 10 GeV/c 2 0 $\psi(2S)$ interactions with comovers?

PbPb 368 ub⁻¹, pp 28.0 pb⁻¹ (5.02 TeV) rr[≹] 1.4 Prompt J/ψ CMS Cent. 0-100% 1.2 Iyl < 0.6</p> 0.8 ♦ 1.8 < |y| < 2.4</p> 0.6 0.4 0.2 0 25 30 15 20 10 p_ (GeV/c) Energy loss and regeneration of J/ψ

Collectivity in small systems: pPb 8.16TeV

CMS

QWG 2019

8

Thank you for your attention!

Acknowledgement

Office of Science

Alfred P. Sloan FOUNDATION

CMS

QWG 2019

CMS Detector

CMS

QWG 2019

Two techniques to separate components:

1. 2D fits of dimuon mass and pseudo-proper decay length

2. Rejecting non-prompt applying a cut on pseudo-proper decay length

- Using reverted $I_{J/\Psi}$ cut
- MC efficiency of $I_{J/\Psi}$ cut

2.76 vs. 5.02 TeV

$\psi(2S)$ modification in pPb

ψ(2S) modification in pPb

6

J/ψ modification in PbPb

FINAL

ψ(2S) / J/ψ vs Centrality

- ψ(2S) is more suppressed than J/ψ at 5.02 TeV
- No strong N_{part} dependence at 5.02 TeV

CMS

Double ratio at 5.02 TeV consistently lower than at 2.76 TeV in 1.6 < y < 2.4, 3 < p_T < 30 GeV/c, especially for most central collisions (~3 s.d. in 0-100%)

QWG 2019

ψ(2S) / J/ψ vs Centrality

- A sequential regeneration model of charmonia states in the fireball evolution might explain the smaller suppression of $\psi(2S)$ compared to J/ ψ observed by CMS in PbPb at 2.76 TeV
- Due to the increase in transverse flow from 2.76 TeV to 5.02 TeV, the model predicts that more regenerated J/ ψ are produced at $p_T > 3$ GeV/c, thus suppressing the double ratio at $3 < p_T < 30$ GeV/c, in agreement with the CMS measurements

13/05/19

CMS